論文の概要: Functional Imaging Constrained Diffusion for Brain PET Synthesis from Structural MRI
- arxiv url: http://arxiv.org/abs/2405.02504v3
- Date: Tue, 12 Nov 2024 00:21:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-13 13:16:25.786816
- Title: Functional Imaging Constrained Diffusion for Brain PET Synthesis from Structural MRI
- Title(参考訳): 構造MRIからの脳PET合成のための機能的イメージング制約拡散
- Authors: Minhui Yu, Mengqi Wu, Ling Yue, Andrea Bozoki, Mingxia Liu,
- Abstract要約: 新しい制約拡散モデル (CDM) を用いて, 入力条件として2組構造MRIを用いた3次元脳PET画像合成のためのフレームワークを提案する。
FICDはPETにノイズを導入し、CDMで徐々に除去する。
CDMは、各denoized PETと基底真理との間のボクセルワイドアライメントを確保するために、機能的イメージング制約を導入して、denoized PETを予測することを学ぶ。
- 参考スコア(独自算出の注目度): 5.190302448685122
- License:
- Abstract: Magnetic resonance imaging (MRI) and positron emission tomography (PET) are increasingly used in multimodal analysis of neurodegenerative disorders. While MRI is broadly utilized in clinical settings, PET is less accessible. Many studies have attempted to use deep generative models to synthesize PET from MRI scans. However, they often suffer from unstable training and inadequately preserve brain functional information conveyed by PET. To this end, we propose a functional imaging constrained diffusion (FICD) framework for 3D brain PET image synthesis with paired structural MRI as input condition, through a new constrained diffusion model (CDM). The FICD introduces noise to PET and then progressively removes it with CDM, ensuring high output fidelity throughout a stable training phase. The CDM learns to predict denoised PET with a functional imaging constraint introduced to ensure voxel-wise alignment between each denoised PET and its ground truth. Quantitative and qualitative analyses conducted on 293 subjects with paired T1-weighted MRI and 18F-fluorodeoxyglucose (FDG)-PET scans suggest that FICD achieves superior performance in generating FDG-PET data compared to state-of-the-art methods. We further validate the effectiveness of the proposed FICD on data from a total of 1,262 subjects through three downstream tasks, with experimental results suggesting its utility and generalizability.
- Abstract(参考訳): 磁気共鳴画像(MRI)とポジトロン・エミッション・トモグラフィ(PET)は、神経変性疾患のマルチモーダル解析にますます利用されている。
MRIは臨床で広く利用されているが、PETは利用できない。
多くの研究は、MRIスキャンからPETを合成するために深層生成モデルを用いた。
しかし、不安定な訓練に苦しむことが多く、PETによって伝達される脳機能情報を不十分に保存する。
そこで本研究では,新しい制約拡散モデル (CDM) を用いて,2組構造MRIを用いた3次元脳PET画像合成のための機能的イメージング制約拡散 (FICD) フレームワークを提案する。
FICDはPETにノイズを導入し、CDMで徐々に除去する。
CDMは、各denoized PETと基底真理との間のボクセルワイドアライメントを確保するために、機能的イメージング制約を導入して、denoized PETを予測することを学ぶ。
T1-weighted MRIと18F-fluorodeoxyglucose (FDG)-PETスキャンを併用した293例の定量および定性分析により,FICDはFDG-PETデータの生成において最先端の手法と比較して優れた性能を示した。
さらに,提案したFICDが3つの下流タスクを通して1,262人の被験者のデータに対して有効であることを示すとともに,その有用性と一般化性を示す実験結果を得た。
関連論文リスト
- Synthesizing beta-amyloid PET images from T1-weighted Structural MRI: A Preliminary Study [6.4038303148510005]
T1強調MRI画像から3次元拡散モデルを用いてA$beta$-PET画像を合成する手法を提案する。
本手法は, 軽度認知障害 (MCI) 患者に対して有効ではないものの, 認知正常症例に対して高品質なA$beta$-PET画像を生成する。
論文 参考訳(メタデータ) (2024-09-26T20:51:59Z) - PASTA: Pathology-Aware MRI to PET Cross-Modal Translation with Diffusion Models [7.6672160690646445]
本研究では,条件付き拡散モデルに基づく新しい画像翻訳フレームワークであるPASTAを紹介する。
サイクル交換一貫性とボリューム生成戦略は、高品質な3DPETスキャンを生成するPASTAの能力を高める。
アルツハイマー分類では、合成スキャンの性能はMRIよりも4%向上し、実際のPETの性能にほぼ達する。
論文 参考訳(メタデータ) (2024-05-27T08:33:24Z) - Three-Dimensional Amyloid-Beta PET Synthesis from Structural MRI with Conditional Generative Adversarial Networks [45.426889188365685]
アルツハイマー病の徴候には、アミロイド-ベタ鉱床と脳萎縮がある。
PETは高価で侵襲的であり、患者を電離放射線に曝す。
MRIはより安価で、非侵襲的で、電離放射線を含まないが、脳萎縮の測定に限られる。
論文 参考訳(メタデータ) (2024-05-03T14:10:29Z) - Super-resolution of biomedical volumes with 2D supervision [84.5255884646906]
超解像のための仮設スライス拡散は、生物学的標本のすべての空間次元にわたるデータ生成分布の固有同値性を利用する。
我々は,高解像度2次元画像の高速取得を特徴とするSliceRの組織学的刺激(SRH)への応用に着目する。
論文 参考訳(メタデータ) (2024-04-15T02:41:55Z) - Amyloid-Beta Axial Plane PET Synthesis from Structural MRI: An Image
Translation Approach for Screening Alzheimer's Disease [49.62561299282114]
定量的に正確な構造MRIから合成アミロイドベータPET画像を生成するために、画像翻訳モデルを実装した。
その結果, 合成PET画像は, 形状, コントラスト, 全体的なSSIMおよびPSNRにおいて, 真実と高い類似性で生成できることが判明した。
論文 参考訳(メタデータ) (2023-09-01T16:26:42Z) - Contrastive Diffusion Model with Auxiliary Guidance for Coarse-to-Fine
PET Reconstruction [62.29541106695824]
本稿では, 粗い予測モジュール (CPM) と反復的修正モジュール (IRM) から構成される粗大なPET再構成フレームワークを提案する。
計算オーバーヘッドの大部分をCPMに委譲することで,本手法のサンプリング速度を大幅に向上させることができる。
2つの追加戦略、すなわち補助的な誘導戦略と対照的な拡散戦略が提案され、再構築プロセスに統合される。
論文 参考訳(メタデータ) (2023-08-20T04:10:36Z) - Synthesizing PET images from High-field and Ultra-high-field MR images Using Joint Diffusion Attention Model [18.106861006893524]
PETスキャンはコストが高く、放射性曝露を伴うため、PETが欠如する。
超高磁場イメージングは臨床と学術の両方で有用であることが証明されている。
高速MRIと超高磁場MRIの合成PET法を提案する。
論文 参考訳(メタデータ) (2023-05-06T02:41:03Z) - Brain MRI-to-PET Synthesis using 3D Convolutional Attention Networks [10.095428964324874]
放射線標識水(15O-water)を用いたPET(Positron emission tomography)はヒトの脳血流測定における金標準であると考えられている。
PETイメージングは、その禁止コストと、通常現場でのサイクロトロン生産を必要とする短命な放射性医薬品トレーサの使用により、広く利用できない。
本研究では,マルチシーケンスMRIスキャンから金標準の15O-PET CBFを予測するためのアテンション機構を備えた畳み込みエンコーダデコーダネットワークを提案する。
論文 参考訳(メタデータ) (2022-11-22T08:25:44Z) - Synthetic PET via Domain Translation of 3D MRI [1.0052333944678682]
56ドルのF-FDG-PET/MRI検査データセットを用いて3D残像UNetをトレーニングし,全身T1強調MRIによる生理的PET取り込みを予測する。
予測されたPET画像は前方に投影され、ベンダーが提供するPET再構成アルゴリズムで使用できる合成PETタイム・オブ・フライ・シングラムを生成する。
論文 参考訳(メタデータ) (2022-06-11T21:32:40Z) - ShuffleUNet: Super resolution of diffusion-weighted MRIs using deep
learning [47.68307909984442]
SISR(Single Image Super-Resolution)は、1つの低解像度入力画像から高解像度(HR)の詳細を得る技術である。
ディープラーニングは、大きなデータセットから事前知識を抽出し、低解像度の画像から優れたMRI画像を生成します。
論文 参考訳(メタデータ) (2021-02-25T14:52:23Z) - Lesion Mask-based Simultaneous Synthesis of Anatomic and MolecularMR
Images using a GAN [59.60954255038335]
提案するフレームワークは,ストレッチアウトアップサンプリングモジュール,ブレインアトラスエンコーダ,セグメンテーション一貫性モジュール,マルチスケールラベルワイド識別器から構成される。
実際の臨床データを用いた実験により,提案モデルが最先端の合成法よりも優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2020-06-26T02:50:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。