論文の概要: Synthesizing PET images from High-field and Ultra-high-field MR images Using Joint Diffusion Attention Model
- arxiv url: http://arxiv.org/abs/2305.03901v2
- Date: Wed, 19 Jun 2024 11:09:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-22 09:00:25.105363
- Title: Synthesizing PET images from High-field and Ultra-high-field MR images Using Joint Diffusion Attention Model
- Title(参考訳): 関節拡散アテンションモデルを用いた高磁場・超高磁場MR画像からのPET画像の合成
- Authors: Taofeng Xie, Chentao Cao, Zhuoxu Cui, Yu Guo, Caiying Wu, Xuemei Wang, Qingneng Li, Zhanli Hu, Tao Sun, Ziru Sang, Yihang Zhou, Yanjie Zhu, Dong Liang, Qiyu Jin, Hongwu Zeng, Guoqing Chen, Haifeng Wang,
- Abstract要約: PETスキャンはコストが高く、放射性曝露を伴うため、PETが欠如する。
超高磁場イメージングは臨床と学術の両方で有用であることが証明されている。
高速MRIと超高磁場MRIの合成PET法を提案する。
- 参考スコア(独自算出の注目度): 18.106861006893524
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: MRI and PET are crucial diagnostic tools for brain diseases, as they provide complementary information on brain structure and function. However, PET scanning is costly and involves radioactive exposure, resulting in a lack of PET. Moreover, simultaneous PET and MRI at ultra-high-field are currently hardly infeasible. Ultra-high-field imaging has unquestionably proven valuable in both clinical and academic settings, especially in the field of cognitive neuroimaging. These motivate us to propose a method for synthetic PET from high-filed MRI and ultra-high-field MRI. From a statistical perspective, the joint probability distribution (JPD) is the most direct and fundamental means of portraying the correlation between PET and MRI. This paper proposes a novel joint diffusion attention model which has the joint probability distribution and attention strategy, named JDAM. JDAM has a diffusion process and a sampling process. The diffusion process involves the gradual diffusion of PET to Gaussian noise by adding Gaussian noise, while MRI remains fixed. JPD of MRI and noise-added PET was learned in the diffusion process. The sampling process is a predictor-corrector. PET images were generated from MRI by JPD of MRI and noise-added PET. The predictor is a reverse diffusion process and the corrector is Langevin dynamics. Experimental results on the public Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset demonstrate that the proposed method outperforms state-of-the-art CycleGAN for high-field MRI (3T MRI). Finally, synthetic PET images from the ultra-high-field (5T MRI and 7T MRI) be attempted, providing a possibility for ultra-high-field PET-MRI imaging.
- Abstract(参考訳): MRIとPETは、脳の構造と機能に関する補完的な情報を提供するため、脳疾患にとって重要な診断ツールである。
しかし、PETスキャンは高価であり、放射性曝露を伴うため、PETが欠如している。
また,超高磁場におけるPETとMRIの同時投与は,現在ではほとんど実現不可能である。
超高磁場イメージングは、臨床と学術の両方で、特に認知神経画像学の分野で、必然的に有益であることが証明されている。
これらのことから,高精細MRIと超高精細MRIの合成PET法を提案する。
統計学的観点から見ると、関節確率分布(JPD)はPETとMRIの相関を示す最も直接的かつ基本的な手段である。
本稿では,JDAMという共同確率分布とアテンション戦略を有する新しい共同拡散アテンションモデルを提案する。
JDAMは拡散過程とサンプリング過程を有する。
拡散過程はガウス雑音を付加することによりPETのガウス雑音への段階的な拡散を伴うが、MRIは固定されている。
拡散過程においてMRIとノイズ付加PETのJPDが得られた。
サンプリングプロセスは予測器・相関器である。
PET画像はMRIのJSDとノイズ付加PETで生成した。
予測子は逆拡散過程であり、補正子はランゲヴィン力学である。
The public Alzheimer's Disease Neuroimaging Initiative (ADNI) データセットの実験的結果は、提案手法が高磁場MRI(3T MRI)に対して最先端のCycleGANより優れていることを示している。
最後に、超高磁場(5T MRIと7T MRI)からの合成PET画像が試みられ、超高磁場PET-MRI画像の可能性が示唆された。
関連論文リスト
- Joint PET-MRI Reconstruction with Diffusion Stochastic Differential Model [19.062446884016854]
PETは低信号対雑音比に苦しむ一方、MRIにおけるk空間データ取得プロセスは時間を要する。
PETとMRIの学習継手確率分布に基づく拡散微分方程式による新しい継手再構成モデルを提案する。
論文 参考訳(メタデータ) (2024-08-07T04:01:50Z) - PASTA: Pathology-Aware MRI to PET Cross-Modal Translation with Diffusion Models [7.6672160690646445]
本研究では,条件付き拡散モデルに基づく新しい画像翻訳フレームワークであるPASTAを紹介する。
サイクル交換一貫性とボリューム生成戦略は、高品質な3DPETスキャンを生成するPASTAの能力を高める。
アルツハイマー分類では、合成スキャンの性能はMRIよりも4%向上し、実際のPETの性能にほぼ達する。
論文 参考訳(メタデータ) (2024-05-27T08:33:24Z) - Functional Imaging Constrained Diffusion for Brain PET Synthesis from Structural MRI [5.190302448685122]
新しい制約拡散モデル (CDM) を用いて, 入力条件として2組構造MRIを用いた3次元脳PET画像合成のためのフレームワークを提案する。
FICDはPETにノイズを導入し、CDMで徐々に除去する。
CDMは、各denoized PETと基底真理との間のボクセルワイドアライメントを確保するために、機能的イメージング制約を導入して、denoized PETを予測することを学ぶ。
論文 参考訳(メタデータ) (2024-05-03T22:33:46Z) - Three-Dimensional Amyloid-Beta PET Synthesis from Structural MRI with Conditional Generative Adversarial Networks [45.426889188365685]
アルツハイマー病の徴候には、アミロイド-ベタ鉱床と脳萎縮がある。
PETは高価で侵襲的であり、患者を電離放射線に曝す。
MRIはより安価で、非侵襲的で、電離放射線を含まないが、脳萎縮の測定に限られる。
論文 参考訳(メタデータ) (2024-05-03T14:10:29Z) - Pseudo-MRI-Guided PET Image Reconstruction Method Based on a Diffusion Probabilistic Model [6.2903848642045626]
MRI情報を用いて解剖学的にPET再建を行ったところ,PET画像の画質が向上する可能性が示唆された。
本研究では,FDG-PET脳画像からT1強調MRI(deep-MRI)画像を推定するために拡散確率モデル(DPM)を用いた。
次にDPM生成T1w-MRIを用いてPET再建を誘導する。
論文 参考訳(メタデータ) (2024-03-26T22:50:36Z) - Joint Diffusion: Mutual Consistency-Driven Diffusion Model for PET-MRI Co-Reconstruction [19.790873500057355]
この研究は、MRIを加速し、PET画像の品質を向上させることを目的としている。
従来のアプローチでは、PET-MRIシステム内の各モードを別々に再構成する。
相互整合駆動拡散モード(MC-Diffusion)を用いた新しいPET-MRI関節再建モデルを提案する。
論文 参考訳(メタデータ) (2023-11-24T13:26:53Z) - Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
磁気共鳴イメージング(MRI)におけるオフ共鳴アーティファクトは、画像ボリューム内のスピンの実際の共鳴周波数が空間情報を符号化するのに使用される期待周波数と異なる場合に発生する視覚歪みである。
本稿では,2次元MRI再構成問題を3次元に引き上げ,このオフ共鳴をモデル化するための「スペクトル」次元を導入することで,これらのアーチファクトを解決することを提案する。
論文 参考訳(メタデータ) (2023-11-22T05:44:51Z) - Style transfer between Microscopy and Magnetic Resonance Imaging via
Generative Adversarial Network in small sample size settings [49.84018914962972]
磁気共鳴イメージング(MRI)のクロスモーダル増強と、同じ組織サンプルに基づく顕微鏡イメージングが期待できる。
コンディショナル・ジェネレーティブ・逆境ネットワーク (cGAN) アーキテクチャを用いて, コーパス・カロサムのMRI画像から顕微鏡組織像を生成する方法を検討した。
論文 参考訳(メタデータ) (2023-10-16T13:58:53Z) - Contrastive Diffusion Model with Auxiliary Guidance for Coarse-to-Fine
PET Reconstruction [62.29541106695824]
本稿では, 粗い予測モジュール (CPM) と反復的修正モジュール (IRM) から構成される粗大なPET再構成フレームワークを提案する。
計算オーバーヘッドの大部分をCPMに委譲することで,本手法のサンプリング速度を大幅に向上させることができる。
2つの追加戦略、すなわち補助的な誘導戦略と対照的な拡散戦略が提案され、再構築プロセスに統合される。
論文 参考訳(メタデータ) (2023-08-20T04:10:36Z) - ShuffleUNet: Super resolution of diffusion-weighted MRIs using deep
learning [47.68307909984442]
SISR(Single Image Super-Resolution)は、1つの低解像度入力画像から高解像度(HR)の詳細を得る技術である。
ディープラーニングは、大きなデータセットから事前知識を抽出し、低解像度の画像から優れたMRI画像を生成します。
論文 参考訳(メタデータ) (2021-02-25T14:52:23Z) - Multifold Acceleration of Diffusion MRI via Slice-Interleaved Diffusion
Encoding (SIDE) [50.65891535040752]
本稿では,Slice-Interleaved Diffusionと呼ばれる拡散符号化方式を提案する。
SIDEは、拡散重み付き(DW)画像ボリュームを異なる拡散勾配で符号化したスライスでインターリーブする。
また,高いスライスアンサンプデータからDW画像を効果的に再構成するためのディープラーニングに基づく手法を提案する。
論文 参考訳(メタデータ) (2020-02-25T14:48:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。