論文の概要: Leveraging the Human Ventral Visual Stream to Improve Neural Network Robustness
- arxiv url: http://arxiv.org/abs/2405.02564v1
- Date: Sat, 4 May 2024 04:33:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-07 19:30:33.327245
- Title: Leveraging the Human Ventral Visual Stream to Improve Neural Network Robustness
- Title(参考訳): ニューラルネットワークのロバスト性を改善するために人間の心室視覚ストリームを活用する
- Authors: Zhenan Shao, Linjian Ma, Bo Li, Diane M. Beck,
- Abstract要約: 人間の物体認識は、乱雑でダイナミックな視覚環境において顕著なレジリエンスを示す。
多くの視覚的タスクにまたがるパフォーマンスにもかかわらず、Deep Neural Networks(DNN)は人間よりもはるかに堅牢である。
ここでは,人間の腹側視覚ストリームの階層的な領域から神経表現によって誘導されたDNNが,敵の攻撃に対する堅牢性を高めていることを示す。
- 参考スコア(独自算出の注目度): 8.419105840498917
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Human object recognition exhibits remarkable resilience in cluttered and dynamic visual environments. In contrast, despite their unparalleled performance across numerous visual tasks, Deep Neural Networks (DNNs) remain far less robust than humans, showing, for example, a surprising susceptibility to adversarial attacks involving image perturbations that are (almost) imperceptible to humans. Human object recognition likely owes its robustness, in part, to the increasingly resilient representations that emerge along the hierarchy of the ventral visual cortex. Here we show that DNNs, when guided by neural representations from a hierarchical sequence of regions in the human ventral visual stream, display increasing robustness to adversarial attacks. These neural-guided models also exhibit a gradual shift towards more human-like decision-making patterns and develop hierarchically smoother decision surfaces. Importantly, the resulting representational spaces differ in important ways from those produced by conventional smoothing methods, suggesting that such neural-guidance may provide previously unexplored robustness solutions. Our findings support the gradual emergence of human robustness along the ventral visual hierarchy and suggest that the key to DNN robustness may lie in increasing emulation of the human brain.
- Abstract(参考訳): 人間の物体認識は、乱雑でダイナミックな視覚環境において顕著なレジリエンスを示す。
対照的に、多くの視覚的タスクにまたがる非並列的なパフォーマンスにもかかわらず、Deep Neural Networks(DNN)は人間よりもはるかに頑丈であり、例えば、(ほとんど)人間には受け入れられない画像摂動を含む敵の攻撃に対する驚くべき感受性を示している。
人間の物体認識は、部分的には腹側視覚皮質の階層に沿って現れる弾力性のある表現にその頑健さを負っていると考えられる。
ここでは,人間の腹側視覚ストリームの階層的な領域から神経表現によって誘導されたDNNが,敵の攻撃に対する堅牢性を高めていることを示す。
これらの神経誘導モデルはまた、より人間的な意思決定パターンへの段階的なシフトを示し、階層的にスムーズな意思決定面を発達させる。
重要なことに、結果の表現空間は従来の平滑化法と重要な方法で異なり、そのようなニューラルガイダンスは、これまで探索されていなかったロバスト性解を提供する可能性があることを示唆している。
我々の研究は、腹側視覚階層に沿った人間の堅牢性の段階的な出現を支持し、DNNの堅牢性の鍵は、人間の脳のエミュレーションの増大にある可能性があることを示唆している。
関連論文リスト
- Aligning Machine and Human Visual Representations across Abstraction Levels [42.86478924838503]
深層ニューラルネットワークは、視覚タスクにおける人間の振る舞いのモデルなど、幅広いアプリケーションで成功している。
しかしながら、ニューラルネットワークのトレーニングと人間の学習は基本的な方法で異なり、ニューラルネットワークは人間のように堅牢に一般化できないことが多い。
人間の概念的知識は、きめ細かいものから粗いものまで階層的に構成されているが、モデル表現は、これらの抽象レベルをすべて正確に捉えているわけではない。
このミスアライメントに対処するために、私たちはまず、人間の判断を模倣するために教師モデルを訓練し、その表現から事前訓練された状態に人間のような構造を移す。
論文 参考訳(メタデータ) (2024-09-10T13:41:08Z) - Achieving More Human Brain-Like Vision via Human EEG Representational Alignment [1.811217832697894]
非侵襲脳波に基づく人間の脳活動に対応する視覚モデル「Re(presentational)Al(ignment)net」を提案する。
我々の革新的な画像から脳への多層符号化フレームワークは、複数のモデル層を最適化することにより、人間の神経のアライメントを向上する。
我々の発見は、ReAlnetが人工と人間の視覚のギャップを埋め、より脳に似た人工知能システムへの道を歩むブレークスルーを表していることを示唆している。
論文 参考訳(メタデータ) (2024-01-30T18:18:41Z) - A Survey on Transferability of Adversarial Examples across Deep Neural Networks [53.04734042366312]
逆の例では、機械学習モデルを操作して誤った予測を行うことができます。
敵の例の転送可能性により、ターゲットモデルの詳細な知識を回避できるブラックボックス攻撃が可能となる。
本研究は, 対角移動可能性の展望を考察した。
論文 参考訳(メタデータ) (2023-10-26T17:45:26Z) - Training on Foveated Images Improves Robustness to Adversarial Attacks [26.472800216546233]
ディープニューラルネットワーク(DNN)は敵の攻撃に弱いことが示されている。
RBlurは、画像のぼやけて彩度を下げることで、周辺視力の損失をシミュレートする画像変換である。
RBlurによって変換された画像に基づいてトレーニングされたDNNは、敵対的攻撃や、他の非敵的、汚職に対してかなり堅牢であり、摂動データに対して最大25%高い精度を達成する。
論文 参考訳(メタデータ) (2023-08-01T21:40:30Z) - Guiding Visual Attention in Deep Convolutional Neural Networks Based on
Human Eye Movements [0.0]
ディープ畳み込みニューラルネットワーク(DCNN)は、当初は生物学的ビジョンの原理にインスパイアされていた。
近年のディープラーニングの進歩は、この類似性を減らしているようだ。
有用なモデルを得るための純粋にデータ駆動型アプローチについて検討する。
論文 参考訳(メタデータ) (2022-06-21T17:59:23Z) - Adversarially trained neural representations may already be as robust as
corresponding biological neural representations [66.73634912993006]
本研究では,霊長類脳活動に直接対人的視覚攻撃を行う方法を開発した。
霊長類の視覚系を構成する生物学的ニューロンは、既存の(不正に訓練された)人工ニューラルネットワークに匹敵する敵の摂動に感受性を示す。
論文 参考訳(メタデータ) (2022-06-19T04:15:29Z) - Searching for the Essence of Adversarial Perturbations [73.96215665913797]
本稿では,ニューラルネットワークの誤予測の原因となる,人間の認識可能な情報を含む対人摂動について述べる。
この人間の認識可能な情報の概念は、敵の摂動に関連する重要な特徴を説明できる。
論文 参考訳(メタデータ) (2022-05-30T18:04:57Z) - Behind the Machine's Gaze: Biologically Constrained Neural Networks
Exhibit Human-like Visual Attention [40.878963450471026]
トップダウン方式でビジュアル・スキャンパスを生成するニューラル・ビジュアル・アテンション(NeVA)アルゴリズムを提案する。
提案手法は,人間の走査パスと類似性の観点から,最先端の非監視的注意モデルより優れていることを示す。
論文 参考訳(メタデータ) (2022-04-19T18:57:47Z) - Overcoming the Domain Gap in Neural Action Representations [60.47807856873544]
3Dポーズデータは、手動で介入することなく、マルチビュービデオシーケンスから確実に抽出できる。
本稿では,ニューラルアクション表現の符号化を,ニューラルアクションと行動拡張のセットと共に導くために使用することを提案する。
ドメインギャップを減らすために、トレーニングの間、同様の行動をしているように見える動物間で神経と行動のデータを取り替える。
論文 参考訳(メタデータ) (2021-12-02T12:45:46Z) - MetaAvatar: Learning Animatable Clothed Human Models from Few Depth
Images [60.56518548286836]
新規な入力ポーズから現実的な布の変形を生成するには、通常、水密メッシュや高密度フルボディスキャンが入力として必要とされる。
本研究では, 単眼深度画像のみを考慮し, 制御可能なニューラルSDFとして表現された, リアルな衣服付きアバターを迅速に生成する手法を提案する。
論文 参考訳(メタデータ) (2021-06-22T17:30:12Z) - Fooling the primate brain with minimal, targeted image manipulation [67.78919304747498]
本稿では、行動に反映される神経活動と知覚の両方の変化をもたらす、最小限の標的画像摂動を生成するための一連の手法を提案する。
我々の研究は、敵対的攻撃、すなわち最小限のターゲットノイズによる画像の操作で同じ目標を共有し、ANNモデルに画像の誤分類を誘導する。
論文 参考訳(メタデータ) (2020-11-11T08:30:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。