Astro-NER -- Astronomy Named Entity Recognition: Is GPT a Good Domain Expert Annotator?
- URL: http://arxiv.org/abs/2405.02602v1
- Date: Sat, 4 May 2024 08:04:39 GMT
- Title: Astro-NER -- Astronomy Named Entity Recognition: Is GPT a Good Domain Expert Annotator?
- Authors: Julia Evans, Sameer Sadruddin, Jennifer D'Souza,
- Abstract summary: We experiment with an approach using predictions from a fine-tuned LLM model to aid non-domain experts in annotating scientific entities within astronomy literature.
Our results reveal moderate agreement between a domain expert and the LLM-assisted non-experts, as well as fair agreement between the domain expert and the LLM model's predictions.
The resultant dataset, containing 5,000 annotated astronomy article titles, is made publicly available.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In this study, we address one of the challenges of developing NER models for scholarly domains, namely the scarcity of suitable labeled data. We experiment with an approach using predictions from a fine-tuned LLM model to aid non-domain experts in annotating scientific entities within astronomy literature, with the goal of uncovering whether such a collaborative process can approximate domain expertise. Our results reveal moderate agreement between a domain expert and the LLM-assisted non-experts, as well as fair agreement between the domain expert and the LLM model's predictions. In an additional experiment, we compare the performance of finetuned and default LLMs on this task. We have also introduced a specialized scientific entity annotation scheme for astronomy, validated by a domain expert. Our approach adopts a scholarly research contribution-centric perspective, focusing exclusively on scientific entities relevant to the research theme. The resultant dataset, containing 5,000 annotated astronomy article titles, is made publicly available.
Related papers
- Combining Domain and Alignment Vectors to Achieve Better Knowledge-Safety Trade-offs in LLMs [64.83462841029089]
We introduce an efficient merging-based alignment method called textscMergeAlign that interpolates the domain and alignment vectors, creating safer domain-specific models.
We apply textscMergeAlign on Llama3 variants that are experts in medicine and finance, obtaining substantial alignment improvements with minimal to no degradation on domain-specific benchmarks.
arXiv Detail & Related papers (2024-11-11T09:32:20Z) - A Comprehensive Survey of Scientific Large Language Models and Their Applications in Scientific Discovery [68.48094108571432]
Large language models (LLMs) have revolutionized the way text and other modalities of data are handled.
We aim to provide a more holistic view of the research landscape by unveiling cross-field and cross-modal connections between scientific LLMs.
arXiv Detail & Related papers (2024-06-16T08:03:24Z) - MASSW: A New Dataset and Benchmark Tasks for AI-Assisted Scientific Workflows [58.56005277371235]
We introduce MASSW, a comprehensive text dataset on Multi-Aspect Summarization of ScientificAspects.
MASSW includes more than 152,000 peer-reviewed publications from 17 leading computer science conferences spanning the past 50 years.
We demonstrate the utility of MASSW through multiple novel machine-learning tasks that can be benchmarked using this new dataset.
arXiv Detail & Related papers (2024-06-10T15:19:09Z) - Evaluating Large Language Models for Structured Science Summarization in the Open Research Knowledge Graph [18.41743815836192]
We propose using Large Language Models (LLMs) to automatically suggest properties for structured science summaries.
Our study performs a comprehensive comparative analysis between ORKG's manually curated properties and those generated by the aforementioned state-of-the-art LLMs.
Overall, LLMs show potential as recommendation systems for structuring science, but further finetuning is recommended to improve their alignment with scientific tasks and mimicry of human expertise.
arXiv Detail & Related papers (2024-05-03T14:03:04Z) - Scientific Large Language Models: A Survey on Biological & Chemical Domains [47.97810890521825]
Large Language Models (LLMs) have emerged as a transformative power in enhancing natural language comprehension.
The application of LLMs extends beyond conventional linguistic boundaries, encompassing specialized linguistic systems developed within various scientific disciplines.
As a burgeoning area in the community of AI for Science, scientific LLMs warrant comprehensive exploration.
arXiv Detail & Related papers (2024-01-26T05:33:34Z) - GeoGalactica: A Scientific Large Language Model in Geoscience [95.15911521220052]
Large language models (LLMs) have achieved huge success for their general knowledge and ability to solve a wide spectrum of tasks in natural language processing (NLP)
We specialize an LLM into geoscience, by further pre-training the model with a vast amount of texts in geoscience, as well as supervised fine-tuning (SFT) the resulting model with our custom collected instruction tuning dataset.
We train GeoGalactica over a geoscience-related text corpus containing 65 billion tokens, preserving as the largest geoscience-specific text corpus.
Then we fine-tune the model with 1 million pairs of instruction-tuning
arXiv Detail & Related papers (2023-12-31T09:22:54Z) - AHAM: Adapt, Help, Ask, Model -- Harvesting LLMs for literature mining [3.8384235322772864]
We present the AHAM' methodology and a metric that guides the domain-specific textbfadaptation of the BERTopic topic modeling framework.
By utilizing the LLaMa2 generative language model, we generate topic definitions via one-shot learning.
For inter-topic similarity evaluation, we leverage metrics from language generation and translation processes.
arXiv Detail & Related papers (2023-12-25T18:23:03Z) - AstroLLaMA: Towards Specialized Foundation Models in Astronomy [1.1694367694169385]
We introduce AstroLLaMA, a 7-billion- parameter model fine-tuned from LLaMA-2 using over 300,000 astronomy abstracts from arXiv.
Our model generates more insightful and scientifically relevant text completions and embedding extraction than state-of-the-arts foundation models.
Its public release aims to spur astronomy-focused research, including automatic paper summarization and conversational agent development.
arXiv Detail & Related papers (2023-09-12T11:02:27Z) - Harnessing the Power of Adversarial Prompting and Large Language Models
for Robust Hypothesis Generation in Astronomy [0.0]
We employ in-context prompting, supplying the model with up to 1000 papers from the NASA Astrophysics Data System.
Our findings point towards a substantial boost in hypothesis generation when using in-context prompting.
We illustrate how adversarial prompting empowers GPT-4 to extract essential details from a vast knowledge base to produce meaningful hypotheses.
arXiv Detail & Related papers (2023-06-20T16:16:56Z) - Domain Specialization as the Key to Make Large Language Models Disruptive: A Comprehensive Survey [100.24095818099522]
Large language models (LLMs) have significantly advanced the field of natural language processing (NLP)
They provide a highly useful, task-agnostic foundation for a wide range of applications.
However, directly applying LLMs to solve sophisticated problems in specific domains meets many hurdles.
arXiv Detail & Related papers (2023-05-30T03:00:30Z) - Assessing Exoplanet Habitability through Data-driven Approaches: A
Comprehensive Literature Review [0.0]
Review aims to illuminate the emerging trends and advancements within exoplanet research.
Focuses on interplay between exoplanet detection, classification, and visualization.
Describes the broad spectrum of machine learning approaches employed in exoplanet research.
arXiv Detail & Related papers (2023-05-18T17:18:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.