Validating Large-Scale Quantum Machine Learning: Efficient Simulation of Quantum Support Vector Machines Using Tensor Networks
- URL: http://arxiv.org/abs/2405.02630v3
- Date: Mon, 06 Jan 2025 22:30:36 GMT
- Title: Validating Large-Scale Quantum Machine Learning: Efficient Simulation of Quantum Support Vector Machines Using Tensor Networks
- Authors: Kuan-Cheng Chen, Tai-Yue Li, Yun-Yuan Wang, Simon See, Chun-Chieh Wang, Robert Wille, Nan-Yow Chen, An-Cheng Yang, Chun-Yu Lin,
- Abstract summary: We present an efficient tensor-network-based approach for simulating large-scale quantum circuits.<n>Our simulator successfully handles QSVMs with up to 784 qubits, completing simulations within seconds on a single high-performance GPU.
- Score: 17.80970950814512
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present an efficient tensor-network-based approach for simulating large-scale quantum circuits, demonstrated using Quantum Support Vector Machines (QSVMs). Our method effectively reduces exponential runtime growth to near-quadratic scaling with respect to the number of qubits in practical scenarios. Traditional state-vector simulations become computationally infeasible beyond approximately 50 qubits; in contrast, our simulator successfully handles QSVMs with up to 784 qubits, completing simulations within seconds on a single high-performance GPU. Furthermore, by employing the Message Passing Interface (MPI) in multi-GPU environments, the approach shows strong linear scalability, reducing computation time as dataset size increases. We validate the framework on the MNIST and Fashion MNIST datasets, achieving successful multiclass classification and emphasizing the potential of QSVMs for high-dimensional data analysis. By integrating tensor-network techniques with high-performance computing resources, this work demonstrates both the feasibility and scalability of large-qubit quantum machine learning models, providing a valuable validation tool in the emerging Quantum-HPC ecosystem.
Related papers
- An Efficient Quantum Classifier Based on Hamiltonian Representations [50.467930253994155]
Quantum machine learning (QML) is a discipline that seeks to transfer the advantages of quantum computing to data-driven tasks.
We propose an efficient approach that circumvents the costs associated with data encoding by mapping inputs to a finite set of Pauli strings.
We evaluate our approach on text and image classification tasks, against well-established classical and quantum models.
arXiv Detail & Related papers (2025-04-13T11:49:53Z) - Quantum parallel information exchange (QPIE) hybrid network with transfer learning [18.43273756128771]
Quantum machine learning (QML) has emerged as an innovative framework with the potential to uncover complex patterns.
We introduce quantum parallel information exchange (QPIE) hybrid network, a new non-sequential hybrid classical quantum model architecture.
We develop a dynamic gradient selection method that applies the parameter shift rule on quantum processing units.
arXiv Detail & Related papers (2025-04-05T17:25:26Z) - Probabilistic Quantum SVM Training on Ising Machine [2.44505480142099]
We propose a probabilistic quantum SVM training framework suitable for Coherent Ising Machines (CIMs)
We employ batch processing and multi-batch ensemble strategies, enabling small-scale quantum devices to train SVMs on larger datasets.
Our method is validated through simulations and real-machine experiments on binary and multi-class datasets.
arXiv Detail & Related papers (2025-03-20T17:20:26Z) - Harnessing CUDA-Q's MPS for Tensor Network Simulations of Large-Scale Quantum Circuits [0.0]
Current largest quantum computers feature more than one thousand qubits.
A more appealing approach for simulating quantum computers is adopting the network approach.
We show that network-based methods provide a significant opportunity to simulate large-qubit circuits.
arXiv Detail & Related papers (2025-01-27T10:36:05Z) - SeQUeNCe GUI: An Extensible User Interface for Discrete Event Quantum Network Simulations [55.2480439325792]
SeQUeNCe is an open source simulator of quantum network communication.
We implement a graphical user interface which maintains the core principles of SeQUeNCe.
arXiv Detail & Related papers (2025-01-15T19:36:09Z) - Realizing Quantum Kernel Models at Scale with Matrix Product State Simulation [0.0]
We develop a quantum kernel framework using a Matrix Product State simulator.
We employ it to perform a classification task with 165 features and 6400 training data points.
We show that quantum kernel model performance improves as the feature dimension and training data increases.
arXiv Detail & Related papers (2024-11-14T10:33:07Z) - State of practice: evaluating GPU performance of state vector and tensor network methods [2.4851820343103035]
This article investigates the limits of current state-of-the-art simulation techniques on a test bench made of eight widely used quantum subroutines.
We highlight how to select the best simulation strategy, obtaining a speedup of up to an order of magnitude.
arXiv Detail & Related papers (2024-01-11T09:22:21Z) - Machine Learning in the Quantum Age: Quantum vs. Classical Support
Vector Machines [0.0]
This work endeavors to juxtapose the efficacy of machine learning algorithms within classical and quantum computational paradigms.
We scrutinize the classification prowess of classical SVM and Quantum Support Vector Machines operational on quantum hardware over the Iris dataset.
arXiv Detail & Related papers (2023-10-17T01:06:59Z) - On-Chip Hardware-Aware Quantization for Mixed Precision Neural Networks [52.97107229149988]
We propose an On-Chip Hardware-Aware Quantization framework, performing hardware-aware mixed-precision quantization on deployed edge devices.
For efficiency metrics, we built an On-Chip Quantization Aware pipeline, which allows the quantization process to perceive the actual hardware efficiency of the quantization operator.
For accuracy metrics, we propose Mask-Guided Quantization Estimation technology to effectively estimate the accuracy impact of operators in the on-chip scenario.
arXiv Detail & Related papers (2023-09-05T04:39:34Z) - QKSAN: A Quantum Kernel Self-Attention Network [53.96779043113156]
A Quantum Kernel Self-Attention Mechanism (QKSAM) is introduced to combine the data representation merit of Quantum Kernel Methods (QKM) with the efficient information extraction capability of SAM.
A Quantum Kernel Self-Attention Network (QKSAN) framework is proposed based on QKSAM, which ingeniously incorporates the Deferred Measurement Principle (DMP) and conditional measurement techniques.
Four QKSAN sub-models are deployed on PennyLane and IBM Qiskit platforms to perform binary classification on MNIST and Fashion MNIST.
arXiv Detail & Related papers (2023-08-25T15:08:19Z) - cuQuantum SDK: A High-Performance Library for Accelerating Quantum
Science [7.791505883503921]
We present the NVIDIA cuQuantum SDK, a state-of-the-art library of composable primitives for GPU-accelerated quantum circuit simulations.
The cuQuantum SDK was created to accelerate and scale up quantum circuit simulators developed by the quantum information science community.
arXiv Detail & Related papers (2023-08-03T19:28:02Z) - Quantum support vector machines for classification and regression on a trapped-ion quantum computer [9.736685719039599]
We examine our quantum machine learning models, which are based on quantum support vector classification (QSVC) and quantum support vector regression (QSVR)
We investigate these models using a quantum-circuit simulator, both with and without noise, as well as the IonQ Harmony quantum processor.
For the classification tasks, the performance of our QSVC models using 4 qubits of the trapped-ion quantum computer was comparable to that obtained from noiseless quantum-circuit simulations.
arXiv Detail & Related papers (2023-07-05T08:06:41Z) - DeepGEMM: Accelerated Ultra Low-Precision Inference on CPU Architectures
using Lookup Tables [49.965024476651706]
DeepGEMM is a lookup table based approach for the execution of ultra low-precision convolutional neural networks on SIMD hardware.
Our implementation outperforms corresponding 8-bit integer kernels by up to 1.74x on x86 platforms.
arXiv Detail & Related papers (2023-04-18T15:13:10Z) - Cloud on-demand emulation of quantum dynamics with tensor networks [48.7576911714538]
We introduce a tensor network based emulator, simulating a programmable analog quantum processing unit (QPU)
The software package is fully integrated in a cloud platform providing a common interface for executing jobs on a HPC cluster as well as dispatching them to a QPU device.
arXiv Detail & Related papers (2023-02-10T14:08:05Z) - Iterative Qubits Management for Quantum Index Searching in a Hybrid
System [56.39703478198019]
IQuCS aims at index searching and counting in a quantum-classical hybrid system.
We implement IQuCS with Qiskit and conduct intensive experiments.
Results demonstrate that it reduces qubits consumption by up to 66.2%.
arXiv Detail & Related papers (2022-09-22T21:54:28Z) - QSAN: A Near-term Achievable Quantum Self-Attention Network [73.15524926159702]
Self-Attention Mechanism (SAM) is good at capturing the internal connections of features.
A novel Quantum Self-Attention Network (QSAN) is proposed for image classification tasks on near-term quantum devices.
arXiv Detail & Related papers (2022-07-14T12:22:51Z) - Quantum Machine Learning for Software Supply Chain Attacks: How Far Can
We Go? [5.655023007686363]
This paper analyzes speed up performance of QC when applied to machine learning algorithms, known as Quantum Machine Learning (QML)
Due to limitations of real quantum computers, the QML methods were implemented on open-source quantum simulators such as Qiskit and IBM Quantum.
Interestingly, the experimental results differ to the speed up promises of QC by demonstrating higher computational time and lower accuracy in comparison to the classical approaches for SSC attacks.
arXiv Detail & Related papers (2022-04-04T21:16:06Z) - Investigation of Quantum Support Vector Machine for Classification in
NISQ era [0.0]
We investigate quantum support vector machine (QSVM) algorithm and its circuit version on present quantum computers.
We compute the efficiency of the QSVM circuit implementation method by encoding training and testing data sample in quantum circuits.
We highlight the technical difficulties one would face while applying the QSVM algorithm on current NISQ era devices.
arXiv Detail & Related papers (2021-12-13T18:59:39Z) - Providing Meaningful Data Summarizations Using Examplar-based Clustering
in Industry 4.0 [67.80123919697971]
We show, that our GPU implementation provides speedups of up to 72x using single-precision and up to 452x using half-precision compared to conventional CPU algorithms.
We apply our algorithm to real-world data from injection molding manufacturing processes and discuss how found summaries help with steering this specific process to cut costs and reduce the manufacturing of bad parts.
arXiv Detail & Related papers (2021-05-25T15:55:14Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
We present a modernized version of the Quantum Virtual Machine (TNQVM) which serves as a quantum circuit simulation backend in the e-scale ACCelerator (XACC) framework.
The new version is based on the general purpose, scalable network processing library, ExaTN, and provides multiple quantum circuit simulators.
By combining the portable XACC quantum processors and the scalable ExaTN backend we introduce an end-to-end virtual development environment which can scale from laptops to future exascale platforms.
arXiv Detail & Related papers (2021-04-21T13:26:42Z) - Ps and Qs: Quantization-aware pruning for efficient low latency neural
network inference [56.24109486973292]
We study the interplay between pruning and quantization during the training of neural networks for ultra low latency applications.
We find that quantization-aware pruning yields more computationally efficient models than either pruning or quantization alone for our task.
arXiv Detail & Related papers (2021-02-22T19:00:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.