Validating Large-Scale Quantum Machine Learning: Efficient Simulation of Quantum Support Vector Machines Using Tensor Networks
- URL: http://arxiv.org/abs/2405.02630v3
- Date: Mon, 06 Jan 2025 22:30:36 GMT
- Title: Validating Large-Scale Quantum Machine Learning: Efficient Simulation of Quantum Support Vector Machines Using Tensor Networks
- Authors: Kuan-Cheng Chen, Tai-Yue Li, Yun-Yuan Wang, Simon See, Chun-Chieh Wang, Robert Wille, Nan-Yow Chen, An-Cheng Yang, Chun-Yu Lin,
- Abstract summary: We present an efficient tensor-network-based approach for simulating large-scale quantum circuits.
Our simulator successfully handles QSVMs with up to 784 qubits, completing simulations within seconds on a single high-performance GPU.
- Score: 17.80970950814512
- License:
- Abstract: We present an efficient tensor-network-based approach for simulating large-scale quantum circuits, demonstrated using Quantum Support Vector Machines (QSVMs). Our method effectively reduces exponential runtime growth to near-quadratic scaling with respect to the number of qubits in practical scenarios. Traditional state-vector simulations become computationally infeasible beyond approximately 50 qubits; in contrast, our simulator successfully handles QSVMs with up to 784 qubits, completing simulations within seconds on a single high-performance GPU. Furthermore, by employing the Message Passing Interface (MPI) in multi-GPU environments, the approach shows strong linear scalability, reducing computation time as dataset size increases. We validate the framework on the MNIST and Fashion MNIST datasets, achieving successful multiclass classification and emphasizing the potential of QSVMs for high-dimensional data analysis. By integrating tensor-network techniques with high-performance computing resources, this work demonstrates both the feasibility and scalability of large-qubit quantum machine learning models, providing a valuable validation tool in the emerging Quantum-HPC ecosystem.
Related papers
- Harnessing CUDA-Q's MPS for Tensor Network Simulations of Large-Scale Quantum Circuits [0.0]
Current largest quantum computers feature more than one thousand qubits.
A more appealing approach for simulating quantum computers is adopting the network approach.
We show that network-based methods provide a significant opportunity to simulate large-qubit circuits.
arXiv Detail & Related papers (2025-01-27T10:36:05Z) - SeQUeNCe GUI: An Extensible User Interface for Discrete Event Quantum Network Simulations [55.2480439325792]
SeQUeNCe is an open source simulator of quantum network communication.
We implement a graphical user interface which maintains the core principles of SeQUeNCe.
arXiv Detail & Related papers (2025-01-15T19:36:09Z) - Realizing Quantum Kernel Models at Scale with Matrix Product State Simulation [0.0]
We develop a quantum kernel framework using a Matrix Product State simulator.
We employ it to perform a classification task with 165 features and 6400 training data points.
We show that quantum kernel model performance improves as the feature dimension and training data increases.
arXiv Detail & Related papers (2024-11-14T10:33:07Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - TANQ-Sim: Tensorcore Accelerated Noisy Quantum System Simulation via QIR on Perlmutter HPC [16.27167995786167]
TANQ-Sim is a full-scale density matrix based simulator designed to simulate practical deep circuits with both coherent and non-coherent noise.
To address the significant computational cost associated with such simulations, we propose a new density-matrix simulation approach.
To optimize performance, we also propose specific gate fusion techniques for density matrix simulation.
arXiv Detail & Related papers (2024-04-19T21:16:29Z) - State of practice: evaluating GPU performance of state vector and tensor network methods [2.4851820343103035]
This article investigates the limits of current state-of-the-art simulation techniques on a test bench made of eight widely used quantum subroutines.
We highlight how to select the best simulation strategy, obtaining a speedup of up to an order of magnitude.
arXiv Detail & Related papers (2024-01-11T09:22:21Z) - On-Chip Hardware-Aware Quantization for Mixed Precision Neural Networks [52.97107229149988]
We propose an On-Chip Hardware-Aware Quantization framework, performing hardware-aware mixed-precision quantization on deployed edge devices.
For efficiency metrics, we built an On-Chip Quantization Aware pipeline, which allows the quantization process to perceive the actual hardware efficiency of the quantization operator.
For accuracy metrics, we propose Mask-Guided Quantization Estimation technology to effectively estimate the accuracy impact of operators in the on-chip scenario.
arXiv Detail & Related papers (2023-09-05T04:39:34Z) - QKSAN: A Quantum Kernel Self-Attention Network [53.96779043113156]
A Quantum Kernel Self-Attention Mechanism (QKSAM) is introduced to combine the data representation merit of Quantum Kernel Methods (QKM) with the efficient information extraction capability of SAM.
A Quantum Kernel Self-Attention Network (QKSAN) framework is proposed based on QKSAM, which ingeniously incorporates the Deferred Measurement Principle (DMP) and conditional measurement techniques.
Four QKSAN sub-models are deployed on PennyLane and IBM Qiskit platforms to perform binary classification on MNIST and Fashion MNIST.
arXiv Detail & Related papers (2023-08-25T15:08:19Z) - QSAN: A Near-term Achievable Quantum Self-Attention Network [73.15524926159702]
Self-Attention Mechanism (SAM) is good at capturing the internal connections of features.
A novel Quantum Self-Attention Network (QSAN) is proposed for image classification tasks on near-term quantum devices.
arXiv Detail & Related papers (2022-07-14T12:22:51Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
We present a modernized version of the Quantum Virtual Machine (TNQVM) which serves as a quantum circuit simulation backend in the e-scale ACCelerator (XACC) framework.
The new version is based on the general purpose, scalable network processing library, ExaTN, and provides multiple quantum circuit simulators.
By combining the portable XACC quantum processors and the scalable ExaTN backend we introduce an end-to-end virtual development environment which can scale from laptops to future exascale platforms.
arXiv Detail & Related papers (2021-04-21T13:26:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.