Realizing Quantum Kernel Models at Scale with Matrix Product State Simulation
- URL: http://arxiv.org/abs/2411.09336v1
- Date: Thu, 14 Nov 2024 10:33:07 GMT
- Title: Realizing Quantum Kernel Models at Scale with Matrix Product State Simulation
- Authors: Mekena Metcalf, Pablo Andrés-Martínez, Nathan Fitzpatrick,
- Abstract summary: We develop a quantum kernel framework using a Matrix Product State simulator.
We employ it to perform a classification task with 165 features and 6400 training data points.
We show that quantum kernel model performance improves as the feature dimension and training data increases.
- Score: 0.0
- License:
- Abstract: Data representation in quantum state space offers an alternative function space for machine learning tasks. However, benchmarking these algorithms at a practical scale has been limited by ineffective simulation methods. We develop a quantum kernel framework using a Matrix Product State (MPS) simulator and employ it to perform a classification task with 165 features and 6400 training data points, well beyond the scale of any prior work. We make use of a circuit ansatz on a linear chain of qubits with increasing interaction distance between qubits. We assess the MPS simulator performance on CPUs and GPUs and, by systematically increasing the qubit interaction distance, we identify a crossover point beyond which the GPU implementation runs faster. We show that quantum kernel model performance improves as the feature dimension and training data increases, which is the first evidence of quantum model performance at scale.
Related papers
- A Comprehensive Cross-Model Framework for Benchmarking the Performance of Quantum Hamiltonian Simulations [0.0]
We present a methodology and software framework to evaluate various facets of the performance of gate-based quantum computers on Trotterized quantum Hamiltonian evolution.
We demonstrate this framework on five Hamiltonian models from the HamLib library: the Fermi and Bose-Hubbard models, the transverse field Ising model, the Heisenberg model, and the Max3SAT problem.
arXiv Detail & Related papers (2024-09-11T00:21:45Z) - TANQ-Sim: Tensorcore Accelerated Noisy Quantum System Simulation via QIR on Perlmutter HPC [16.27167995786167]
TANQ-Sim is a full-scale density matrix based simulator designed to simulate practical deep circuits with both coherent and non-coherent noise.
To address the significant computational cost associated with such simulations, we propose a new density-matrix simulation approach.
To optimize performance, we also propose specific gate fusion techniques for density matrix simulation.
arXiv Detail & Related papers (2024-04-19T21:16:29Z) - State of practice: evaluating GPU performance of state vector and tensor
network methods [2.7930955543692817]
This article investigates the limits of current state-of-the-art simulation techniques on a test bench made of eight widely used quantum subroutines.
We highlight how to select the best simulation strategy, obtaining a speedup of up to an order of magnitude.
arXiv Detail & Related papers (2024-01-11T09:22:21Z) - Efficient Quantum Circuit Simulation by Tensor Network Methods on Modern GPUs [11.87665112550076]
In quantum hardware, primary simulation methods are based on state vectors and tensor networks.
As the number of qubits and quantum gates grows larger, traditional state-vector based quantum circuit simulation methods prove inadequate due to the overwhelming size of the Hilbert space and extensive entanglement.
In this study, we propose general optimization strategies from two aspects: computational efficiency and accuracy.
arXiv Detail & Related papers (2023-10-06T02:24:05Z) - Simulation of Entanglement Generation between Absorptive Quantum
Memories [56.24769206561207]
We use the open-source Simulator of QUantum Network Communication (SeQUeNCe), developed by our team, to simulate entanglement generation between two atomic frequency comb (AFC) absorptive quantum memories.
We realize the representation of photonic quantum states within truncated Fock spaces in SeQUeNCe.
We observe varying fidelity with SPDC source mean photon number, and varying entanglement generation rate with both mean photon number and memory mode number.
arXiv Detail & Related papers (2022-12-17T05:51:17Z) - Towards Quantum Graph Neural Networks: An Ego-Graph Learning Approach [47.19265172105025]
We propose a novel hybrid quantum-classical algorithm for graph-structured data, which we refer to as the Ego-graph based Quantum Graph Neural Network (egoQGNN)
egoQGNN implements the GNN theoretical framework using the tensor product and unity matrix representation, which greatly reduces the number of model parameters required.
The architecture is based on a novel mapping from real-world data to Hilbert space.
arXiv Detail & Related papers (2022-01-13T16:35:45Z) - Parallel Simulation of Quantum Networks with Distributed Quantum State
Management [56.24769206561207]
We identify requirements for parallel simulation of quantum networks and develop the first parallel discrete event quantum network simulator.
Our contributions include the design and development of a quantum state manager that maintains shared quantum information distributed across multiple processes.
We release the parallel SeQUeNCe simulator as an open-source tool alongside the existing sequential version.
arXiv Detail & Related papers (2021-11-06T16:51:17Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
We present a modernized version of the Quantum Virtual Machine (TNQVM) which serves as a quantum circuit simulation backend in the e-scale ACCelerator (XACC) framework.
The new version is based on the general purpose, scalable network processing library, ExaTN, and provides multiple quantum circuit simulators.
By combining the portable XACC quantum processors and the scalable ExaTN backend we introduce an end-to-end virtual development environment which can scale from laptops to future exascale platforms.
arXiv Detail & Related papers (2021-04-21T13:26:42Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - One-step regression and classification with crosspoint resistive memory
arrays [62.997667081978825]
High speed, low energy computing machines are in demand to enable real-time artificial intelligence at the edge.
One-step learning is supported by simulations of the prediction of the cost of a house in Boston and the training of a 2-layer neural network for MNIST digit recognition.
Results are all obtained in one computational step, thanks to the physical, parallel, and analog computing within the crosspoint array.
arXiv Detail & Related papers (2020-05-05T08:00:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.