論文の概要: From Generalization Analysis to Optimization Designs for State Space Models
- arxiv url: http://arxiv.org/abs/2405.02670v1
- Date: Sat, 4 May 2024 13:58:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-07 19:01:15.135520
- Title: From Generalization Analysis to Optimization Designs for State Space Models
- Title(参考訳): 一般化解析から状態空間モデルへの最適化設計へ
- Authors: Fusheng Liu, Qianxiao Li,
- Abstract要約: 状態空間モデル (SSM) は時系列解析の基礎モデルである。
一般化結果に基づく学習アルゴリズムの改良を提案する。
- 参考スコア(独自算出の注目度): 14.932318540666547
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A State Space Model (SSM) is a foundation model in time series analysis, which has recently been shown as an alternative to transformers in sequence modeling. In this paper, we theoretically study the generalization of SSMs and propose improvements to training algorithms based on the generalization results. Specifically, we give a \textit{data-dependent} generalization bound for SSMs, showing an interplay between the SSM parameters and the temporal dependencies of the training sequences. Leveraging the generalization bound, we (1) set up a scaling rule for model initialization based on the proposed generalization measure, which significantly improves the robustness of the output value scales on SSMs to different temporal patterns in the sequence data; (2) introduce a new regularization method for training SSMs to enhance the generalization performance. Numerical results are conducted to validate our results.
- Abstract(参考訳): 状態空間モデル(英: State Space Model, SSM)は、時系列解析における基礎モデルであり、最近、シーケンシャルモデリングにおけるトランスフォーマーの代替として示されている。
本稿では,SSMの一般化を理論的に研究し,一般化結果に基づく学習アルゴリズムの改良を提案する。
具体的には、SSM に対して \textit{data-dependent} の一般化を与え、SSM パラメータとトレーニングシーケンスの時間的依存との間の相互作用を示す。
一般化バウンダリを利用して,(1)提案した一般化尺度に基づいてモデル初期化のスケーリングルールを設定し,SSMの出力値スケールのロバスト性を大幅に向上させるとともに,SSMをトレーニングするための新たな正規化手法を導入し,一般化性能を向上させる。
結果を検証するために, 数値計算を行った。
関連論文リスト
- On the Expressiveness and Length Generalization of Selective State-Space Models on Regular Languages [56.22289522687125]
SSM(Selective State-space Model)はTransformerの代替品である。
正規言語タスクにおける表現性や長さの一般化性能を解析する。
本稿では,Selective Dense State-Space Model (SD-SSM)を紹介する。
論文 参考訳(メタデータ) (2024-12-26T20:53:04Z) - Deep Learning-based Approaches for State Space Models: A Selective Review [15.295157876811066]
状態空間モデル(SSM)は動的システム解析のための強力なフレームワークを提供する。
本稿では、SSMに対するディープニューラルネットワークに基づくアプローチの最近の進歩を選択的にレビューする。
論文 参考訳(メタデータ) (2024-12-15T15:04:35Z) - Optimizing Sequential Recommendation Models with Scaling Laws and Approximate Entropy [104.48511402784763]
SRモデルの性能法則は,モデルの性能とデータ品質の関係を理論的に調査し,モデル化することを目的としている。
データ品質を評価するために、従来のデータ量メトリクスと比較して、より曖昧なアプローチを示すために、近似エントロピー(ApEn)を提案する。
論文 参考訳(メタデータ) (2024-11-30T10:56:30Z) - Autocorrelation Matters: Understanding the Role of Initialization Schemes for State Space Models [14.932318540666547]
状態空間モデル(SSM)パラメータを初期化する現在の手法は、HiPPOフレームワークに依存している。
入力シーケンスの自己相関を考慮し、SSMスキームの役割を更に検討する。
SSM状態行列の固有値の虚部がSSM最適化問題の条件付けを決定することを示す。
論文 参考訳(メタデータ) (2024-11-29T03:55:19Z) - SMR: State Memory Replay for Long Sequence Modeling [19.755738298836526]
本稿では並列畳み込み計算における互換性の限界を克服する新しい非再帰的非一様サンプル処理戦略を提案する。
本研究では,学習可能な記憶を利用する状態記憶再生(SMR)を導入し,学習データと異なるサンプリングポイントでの一般化のために,現在の状態を多段階情報で調整する。
自己回帰言語モデリングとLong Range Arenaにおける長距離モデリングタスクの実験は、一連のSSMモデルに対するSMRメカニズムの一般的な効果を実証している。
論文 参考訳(メタデータ) (2024-05-27T17:53:32Z) - State Space Models as Foundation Models: A Control Theoretic Overview [3.3222241150972356]
近年、ディープニューラルネットワークアーキテクチャにおける線形状態空間モデル(SSM)の統合への関心が高まっている。
本論文は、制御理論者のためのSSMベースのアーキテクチャの穏やかな導入を目的としたものである。
もっとも成功したSSM提案の体系的なレビューを提供し、コントロール理論の観点から主要な特徴を強調している。
論文 参考訳(メタデータ) (2024-03-25T16:10:47Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
モデルベースRL(MBRL)の非遅延性能保証のための新規で一般的な理論スキームを提案する。
続いて導いた境界は、モデルシフトとパフォーマンス改善の関係を明らかにします。
さらなる例では、動的に変化する探索からの学習モデルが、最終的なリターンの恩恵をもたらすことが示されている。
論文 参考訳(メタデータ) (2022-10-15T17:57:43Z) - SimSCOOD: Systematic Analysis of Out-of-Distribution Generalization in
Fine-tuned Source Code Models [58.78043959556283]
本研究は,Low-Rank Adaptation (LoRA)ファインチューニング手法を含む,異なる微調整手法によるモデルの挙動について検討する。
解析の結果、LoRAファインチューニングは様々なシナリオにおけるフルファインチューニングよりも、OODの一般化性能が大幅に向上していることが判明した。
論文 参考訳(メタデータ) (2022-10-10T16:07:24Z) - A General Framework for Sample-Efficient Function Approximation in
Reinforcement Learning [132.45959478064736]
モデルベースとモデルフリー強化学習を統合した汎用フレームワークを提案する。
最適化に基づく探索のための分解可能な構造特性を持つ新しい推定関数を提案する。
本フレームワークでは,OPERA (Optimization-based Exploration with Approximation) という新しいサンプル効率アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-09-30T17:59:16Z) - Posterior Differential Regularization with f-divergence for Improving
Model Robustness [95.05725916287376]
クリーン入力とノイズ入力のモデル後部差を規則化する手法に着目する。
後微分正則化を$f$-divergencesの族に一般化する。
実験の結果, 後方微分を$f$-divergenceで正規化することで, モデルロバスト性の向上が期待できることがわかった。
論文 参考訳(メタデータ) (2020-10-23T19:58:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。