Implicit Safe Set Algorithm for Provably Safe Reinforcement Learning
- URL: http://arxiv.org/abs/2405.02754v1
- Date: Sat, 4 May 2024 20:59:06 GMT
- Title: Implicit Safe Set Algorithm for Provably Safe Reinforcement Learning
- Authors: Weiye Zhao, Tairan He, Feihan Li, Changliu Liu,
- Abstract summary: We present a model-free safe control algorithm, the implicit safe set algorithm, for synthesizing safeguards for DRL agents.
The proposed algorithm synthesizes a safety index (barrier certificate) and a subsequent safe control law solely by querying a black-box dynamic function.
We validate the proposed algorithm on the state-of-the-art Safety Gym benchmark, where it achieves zero safety violations while gaining $95% pm 9%$ cumulative reward.
- Score: 7.349727826230864
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep reinforcement learning (DRL) has demonstrated remarkable performance in many continuous control tasks. However, a significant obstacle to the real-world application of DRL is the lack of safety guarantees. Although DRL agents can satisfy system safety in expectation through reward shaping, designing agents to consistently meet hard constraints (e.g., safety specifications) at every time step remains a formidable challenge. In contrast, existing work in the field of safe control provides guarantees on persistent satisfaction of hard safety constraints. However, these methods require explicit analytical system dynamics models to synthesize safe control, which are typically inaccessible in DRL settings. In this paper, we present a model-free safe control algorithm, the implicit safe set algorithm, for synthesizing safeguards for DRL agents that ensure provable safety throughout training. The proposed algorithm synthesizes a safety index (barrier certificate) and a subsequent safe control law solely by querying a black-box dynamic function (e.g., a digital twin simulator). Moreover, we theoretically prove that the implicit safe set algorithm guarantees finite time convergence to the safe set and forward invariance for both continuous-time and discrete-time systems. We validate the proposed algorithm on the state-of-the-art Safety Gym benchmark, where it achieves zero safety violations while gaining $95\% \pm 9\%$ cumulative reward compared to state-of-the-art safe DRL methods. Furthermore, the resulting algorithm scales well to high-dimensional systems with parallel computing.
Related papers
- Sampling-based Safe Reinforcement Learning for Nonlinear Dynamical
Systems [15.863561935347692]
We develop provably safe and convergent reinforcement learning algorithms for control of nonlinear dynamical systems.
Recent advances at the intersection of control and RL follow a two-stage, safety filter approach to enforcing hard safety constraints.
We develop a single-stage, sampling-based approach to hard constraint satisfaction that learns RL controllers enjoying classical convergence guarantees.
arXiv Detail & Related papers (2024-03-06T19:39:20Z) - Safe Exploration in Reinforcement Learning: A Generalized Formulation
and Algorithms [8.789204441461678]
We present a solution of the safe exploration (GSE) problem in the form of a meta-algorithm for safe exploration, MASE.
Our proposed algorithm achieves better performance than state-of-the-art algorithms on grid-world and Safety Gym benchmarks.
arXiv Detail & Related papers (2023-10-05T00:47:09Z) - Approximate Model-Based Shielding for Safe Reinforcement Learning [83.55437924143615]
We propose a principled look-ahead shielding algorithm for verifying the performance of learned RL policies.
Our algorithm differs from other shielding approaches in that it does not require prior knowledge of the safety-relevant dynamics of the system.
We demonstrate superior performance to other safety-aware approaches on a set of Atari games with state-dependent safety-labels.
arXiv Detail & Related papers (2023-07-27T15:19:45Z) - Evaluating Model-free Reinforcement Learning toward Safety-critical
Tasks [70.76757529955577]
This paper revisits prior work in this scope from the perspective of state-wise safe RL.
We propose Unrolling Safety Layer (USL), a joint method that combines safety optimization and safety projection.
To facilitate further research in this area, we reproduce related algorithms in a unified pipeline and incorporate them into SafeRL-Kit.
arXiv Detail & Related papers (2022-12-12T06:30:17Z) - Safe and Efficient Reinforcement Learning Using
Disturbance-Observer-Based Control Barrier Functions [5.571154223075409]
This paper presents a method for safe and efficient reinforcement learning (RL) using disturbance observers (DOBs) and control barrier functions (CBFs)
Our method does not involve model learning, and leverages DOBs to accurately estimate the pointwise value of the uncertainty, which is then incorporated into a robust CBF condition to generate safe actions.
Simulation results on a unicycle and a 2D quadrotor demonstrate that the proposed method outperforms a state-of-the-art safe RL algorithm using CBFs and Gaussian processes-based model learning.
arXiv Detail & Related papers (2022-11-30T18:49:53Z) - Safe Model-Based Reinforcement Learning with an Uncertainty-Aware
Reachability Certificate [6.581362609037603]
We build a safe reinforcement learning framework to resolve constraints required by the DRC and its corresponding shield policy.
We also devise a line search method to maintain safety and reach higher returns simultaneously while leveraging the shield policy.
arXiv Detail & Related papers (2022-10-14T06:16:53Z) - Enforcing Hard Constraints with Soft Barriers: Safe Reinforcement
Learning in Unknown Stochastic Environments [84.3830478851369]
We propose a safe reinforcement learning approach that can jointly learn the environment and optimize the control policy.
Our approach can effectively enforce hard safety constraints and significantly outperform CMDP-based baseline methods in system safe rate measured via simulations.
arXiv Detail & Related papers (2022-09-29T20:49:25Z) - Recursively Feasible Probabilistic Safe Online Learning with Control Barrier Functions [60.26921219698514]
We introduce a model-uncertainty-aware reformulation of CBF-based safety-critical controllers.
We then present the pointwise feasibility conditions of the resulting safety controller.
We use these conditions to devise an event-triggered online data collection strategy.
arXiv Detail & Related papers (2022-08-23T05:02:09Z) - Log Barriers for Safe Black-box Optimization with Application to Safe
Reinforcement Learning [72.97229770329214]
We introduce a general approach for seeking high dimensional non-linear optimization problems in which maintaining safety during learning is crucial.
Our approach called LBSGD is based on applying a logarithmic barrier approximation with a carefully chosen step size.
We demonstrate the effectiveness of our approach on minimizing violation in policy tasks in safe reinforcement learning.
arXiv Detail & Related papers (2022-07-21T11:14:47Z) - Safe Reinforcement Learning via Confidence-Based Filters [78.39359694273575]
We develop a control-theoretic approach for certifying state safety constraints for nominal policies learned via standard reinforcement learning techniques.
We provide formal safety guarantees, and empirically demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2022-07-04T11:43:23Z) - Model-Based Safe Reinforcement Learning with Time-Varying State and
Control Constraints: An Application to Intelligent Vehicles [13.40143623056186]
This paper proposes a safe RL algorithm for optimal control of nonlinear systems with time-varying state and control constraints.
A multi-step policy evaluation mechanism is proposed to predict the policy's safety risk under time-varying safety constraints and guide the policy to update safely.
The proposed algorithm outperforms several state-of-the-art RL algorithms in the simulated Safety Gym environment.
arXiv Detail & Related papers (2021-12-18T10:45:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.