論文の概要: Fused attention mechanism-based ore sorting network
- arxiv url: http://arxiv.org/abs/2405.02785v1
- Date: Sun, 5 May 2024 02:03:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-07 18:20:16.715488
- Title: Fused attention mechanism-based ore sorting network
- Title(参考訳): 融合注意機構に基づく鉱石選別ネットワーク
- Authors: Junjiang Zhen, Bojun Xie,
- Abstract要約: 本研究は,注目機構とマルチスケール機能融合戦略を組み込んだOreYOLOという手法を提案する。
ネットワーク構造は軽量に設計されており、高い精度(それぞれ99.3%と99.2%)を維持しながら、低数のパラメータ(3.458M)と計算複雑性(6.3GFLOP)を達成する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning has had a significant impact on the identification and classification of mineral resources, especially playing a key role in efficiently and accurately identifying different minerals, which is important for improving the efficiency and accuracy of mining. However, traditional ore sorting meth- ods often suffer from inefficiency and lack of accuracy, especially in complex mineral environments. To address these challenges, this study proposes a method called OreYOLO, which incorporates an attentional mechanism and a multi-scale feature fusion strategy, based on ore data from gold and sul- fide ores. By introducing the progressive feature pyramid structure into YOLOv5 and embedding the attention mechanism in the feature extraction module, the detection performance and accuracy of the model are greatly improved. In order to adapt to the diverse ore sorting scenarios and the deployment requirements of edge devices, the network structure is designed to be lightweight, which achieves a low number of parameters (3.458M) and computational complexity (6.3GFLOPs) while maintaining high accuracy (99.3% and 99.2%, respectively). In the experimental part, a target detection dataset containing 6000 images of gold and sulfuric iron ore is constructed for gold and sulfuric iron ore classification training, and several sets of comparison experiments are set up, including the YOLO series, EfficientDet, Faster-RCNN, and CenterNet, etc., and the experiments prove that OreYOLO outperforms the commonly used high-performance object detection of these architectures
- Abstract(参考訳): 深層学習は鉱物資源の同定と分類に大きな影響を与えており、特に鉱業の効率と正確性を向上させる上で重要な役割を担っている。
しかし、伝統的な鉱石の選別法は、特に複雑な鉱物環境では、非効率性と精度の欠如に悩まされることが多い。
これらの課題に対処するために,金鉱石および硫化鉱石鉱石の鉱石データに基づいて,注目機構とマルチスケール機能融合戦略を組み込んだOreYOLO法を提案する。
YOLOv5にプログレッシブな特徴ピラミッド構造を導入し、特徴抽出モジュールに注目機構を組み込むことで、モデルの検出性能と精度を大幅に向上する。
エッジデバイスの様々な鉱石のソートシナリオと配置要件に適応するために、ネットワーク構造は軽量に設計されており、高い精度(それぞれ99.3%と99.2%)を維持しながら、低数のパラメータ(3.458M)と計算複雑性(6.3GFLOP)を達成する。
実験部分では、金鉄鉱石分類訓練のために、6000枚の金鉄鉱石の画像を含むターゲット検出データセットを構築し、YOLOシリーズ、EfficientDet、Faster-RCNN、CenterNetなど、いくつかの比較実験を行い、OreYOLOがこれらのアーキテクチャの一般的な高性能物体検出よりも優れていることを示す。
関連論文リスト
- What is YOLOv9: An In-Depth Exploration of the Internal Features of the Next-Generation Object Detector [0.0]
本研究は, YOLOv9オブジェクト検出モデルに焦点をあて, アーキテクチャの革新, トレーニング方法論, 性能改善に焦点をあてる。
汎用高効率層集約ネットワークGELANやProgrammable Gradient Information PGIといった重要な進歩は、特徴抽出と勾配流を著しく向上させる。
本稿では, YOLOv9の内部特徴とその実世界の応用性について, リアルタイム物体検出の最先端技術として確立した。
論文 参考訳(メタデータ) (2024-09-12T07:46:58Z) - Renormalized Connection for Scale-preferred Object Detection in Satellite Imagery [51.83786195178233]
我々は、効率的な特徴抽出の観点から再正規化群理論を実装するために、知識発見ネットワーク(KDN)を設計する。
KDN上の再正規化接続(RC)は、マルチスケール特徴の「相乗的焦点」を可能にする。
RCはFPNベースの検出器のマルチレベル特徴の分割・対数機構を幅広いスケールで予測されたタスクに拡張する。
論文 参考訳(メタデータ) (2024-09-09T13:56:22Z) - LSM-YOLO: A Compact and Effective ROI Detector for Medical Detection [8.812471041082105]
軽量適応抽出(LAE)とマルチパスシャント特徴マッチング(MSFM)を組み合わせた軽量シャントマッチングヨロ(LSM-YOLO)という新しいモデルを提案する。
LSM-YOLOは、膵腫瘍のプライベートデータセットで48.6%AP、BCCD血液細胞検出公開データセットで65.1%AP、Br35h脳腫瘍検出公開データセットで73.0%APを達成した。
論文 参考訳(メタデータ) (2024-08-26T08:16:58Z) - AI-Guided Feature Segmentation Techniques to Model Features from Single Crystal Diamond Growth [7.708823384783919]
ダイヤモンド, ポケットホルダー, 背景などの幾何学的特徴の正確な画素マスクを, 形状と大きさに基づく微分特徴とともに分離し, 分類するための, 深層学習によるセマンティックセマンティックセマンティックセマンティクス手法を提案する。
DeeplabV3plusアーキテクチャに基づく当社のトップパフォーマンスモデルは、ポケットホルダーの96.31%、ダイヤモンドトップの98.60%、ダイヤモンドサイドの特徴の91.64%という、興味のある特徴の分類において顕著な精度を実現しています。
論文 参考訳(メタデータ) (2024-04-10T19:16:08Z) - Fine-Tuning Surrogate Gradient Learning for Optimal Hardware Performance
in Spiking Neural Networks [1.52292571922932]
スパイキングニューラルネットワーク(SNN)は、ハードウェアで慎重に活用することで、膨大なエネルギー効率の恩恵をもたらすことができる。
この研究は、トレーニングがハードウェアのパフォーマンスに与える影響に関する新たな洞察を明らかにします。
論文 参考訳(メタデータ) (2024-02-09T06:38:12Z) - A lightweight and accurate YOLO-like network for small target detection
in Aerial Imagery [94.78943497436492]
小型ターゲット検出のためのシンプルで高速で効率的なネットワークであるYOLO-Sを提案する。
YOLO-SはDarknet20をベースとした小さな特徴抽出器と、バイパスと連結の両方を通じて接続をスキップする。
YOLO-Sはパラメータサイズが87%減少し、約半分のFLOPがYOLOv3となり、低消費電力の産業用アプリケーションに実用化された。
論文 参考訳(メタデータ) (2022-04-05T16:29:49Z) - Tracking perovskite crystallization via deep learning-based feature
detection on 2D X-ray scattering data [137.47124933818066]
本稿では,より高速なR-CNN深層学習アーキテクチャに基づくX線回折画像の自動解析パイプラインを提案する。
有機-無機ペロブスカイト構造の結晶化をリアルタイムに追跡し, 2つの応用で検証した。
論文 参考訳(メタデータ) (2022-02-22T15:39:00Z) - MiNet: A Convolutional Neural Network for Identifying and Categorising
Minerals [0.0]
7種類の鉱物を識別・分類する単一ラベル画像分類モデルを開発した。
実世界のデータセットを用いて行った実験は、このモデルが90.75%の精度を達成したことを示している。
論文 参考訳(メタデータ) (2021-11-22T15:00:28Z) - Towards Balanced Learning for Instance Recognition [149.76724446376977]
本稿では,インスタンス認識のためのバランス学習のためのフレームワークであるLibra R-CNNを提案する。
IoUバランスのサンプリング、バランスの取れた特徴ピラミッド、客観的再重み付けをそれぞれ統合し、サンプル、特徴、客観的レベルの不均衡を低減します。
論文 参考訳(メタデータ) (2021-08-23T13:40:45Z) - Deep Learning for Virtual Screening: Five Reasons to Use ROC Cost
Functions [80.12620331438052]
深層学習は サイリコの何十億もの分子を 迅速にスクリーニングする 重要なツールとなりました
その重要性にもかかわらず、厳密なクラス不均衡、高い決定しきい値、いくつかのデータセットにおける基底真理ラベルの欠如など、これらのモデルのトレーニングにおいて重大な課題が続いている。
このような場合、クラス不均衡に対するロバスト性から、レシーバ動作特性(ROC)を直接最適化することを好んで論じる。
論文 参考訳(メタデータ) (2020-06-25T08:46:37Z) - When Residual Learning Meets Dense Aggregation: Rethinking the
Aggregation of Deep Neural Networks [57.0502745301132]
我々は,グローバルな残差学習と局所的なマイクロセンスアグリゲーションを備えた新しいアーキテクチャであるMicro-Dense Netsを提案する。
我々のマイクロセンスブロックはニューラルアーキテクチャ検索に基づくモデルと統合して性能を向上させることができる。
論文 参考訳(メタデータ) (2020-04-19T08:34:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。