論文の概要: LSM-YOLO: A Compact and Effective ROI Detector for Medical Detection
- arxiv url: http://arxiv.org/abs/2408.14087v1
- Date: Mon, 26 Aug 2024 08:16:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-27 14:42:58.979217
- Title: LSM-YOLO: A Compact and Effective ROI Detector for Medical Detection
- Title(参考訳): LSM-YOLO:医学的検出のためのコンパクトかつ効果的なROI検出器
- Authors: Zhongwen Yu, Qiu Guan, Jianmin Yang, Zhiqiang Yang, Qianwei Zhou, Yang Chen, Feng Chen,
- Abstract要約: 軽量適応抽出(LAE)とマルチパスシャント特徴マッチング(MSFM)を組み合わせた軽量シャントマッチングヨロ(LSM-YOLO)という新しいモデルを提案する。
LSM-YOLOは、膵腫瘍のプライベートデータセットで48.6%AP、BCCD血液細胞検出公開データセットで65.1%AP、Br35h脳腫瘍検出公開データセットで73.0%APを達成した。
- 参考スコア(独自算出の注目度): 8.812471041082105
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In existing medical Region of Interest (ROI) detection, there lacks an algorithm that can simultaneously satisfy both real-time performance and accuracy, not meeting the growing demand for automatic detection in medicine. Although the basic YOLO framework ensures real-time detection due to its fast speed, it still faces challenges in maintaining precision concurrently. To alleviate the above problems, we propose a novel model named Lightweight Shunt Matching-YOLO (LSM-YOLO), with Lightweight Adaptive Extraction (LAE) and Multipath Shunt Feature Matching (MSFM). Firstly, by using LAE to refine feature extraction, the model can obtain more contextual information and high-resolution details from multiscale feature maps, thereby extracting detailed features of ROI in medical images while reducing the influence of noise. Secondly, MSFM is utilized to further refine the fusion of high-level semantic features and low-level visual features, enabling better fusion between ROI features and neighboring features, thereby improving the detection rate for better diagnostic assistance. Experimental results demonstrate that LSM-YOLO achieves 48.6% AP on a private dataset of pancreatic tumors, 65.1% AP on the BCCD blood cell detection public dataset, and 73.0% AP on the Br35h brain tumor detection public dataset. Our model achieves state-of-the-art performance with minimal parameter cost on the above three datasets. The source codes are at: https://github.com/VincentYuuuuuu/LSM-YOLO.
- Abstract(参考訳): 既存のROI(Health Region of Interest)検出では、リアルタイムのパフォーマンスと精度の両方を同時に満たすアルゴリズムが欠如しており、医療における自動検出の需要が増大している。
YOLOフレームワークは、高速なリアルタイム検出を実現するが、同時に精度を維持するという課題に直面している。
上記の問題を緩和するために,軽量適応抽出 (LAE) とマルチパスシャント特徴マッチング (MSFM) を用いた軽量シャントマッチング-YOLO (LSM-YOLO) という新しいモデルを提案する。
まず,LAEを用いて特徴抽出を改良することにより,マルチスケール特徴マップからよりコンテキスト情報と高解像度な詳細情報を得ることができ,医用画像におけるROIの詳細な特徴を抽出し,ノイズの影響を低減できる。
第二に、MSFMは高レベルのセマンティック特徴と低レベルの視覚特徴の融合をさらに洗練させ、ROI特徴と近隣特徴との融合をより良くし、診断支援を改善するために検出率を向上させる。
LSM-YOLOは、膵腫瘍のプライベートデータセットで48.6%AP、BCCD血液細胞検出公開データセットで65.1%AP、Br35h脳腫瘍検出公開データセットで73.0%APを達成した。
本モデルでは,上記の3つのデータセットに対して,パラメータコストを最小限に抑えながら,最先端の性能を実現する。
ソースコードは:https://github.com/VincentYuuuuu/LSM-YOLO。
関連論文リスト
- CAF-YOLO: A Robust Framework for Multi-Scale Lesion Detection in Biomedical Imagery [0.0682074616451595]
CAF-YOLOは、畳み込みニューラルネットワーク(CNN)とトランスフォーマーの強みを活用する、医学的対象検出のための、巧妙で堅牢な方法である。
ACFMモジュールはグローバル機能とローカル機能の両方のモデリングを強化し、長期的な機能依存のキャプチャを可能にする。
MSNNは多様なスケールにまたがる特徴を抽出することで、マルチスケールの情報集約を改善する。
論文 参考訳(メタデータ) (2024-08-04T01:44:44Z) - A Machine Learning Approach for Identifying Anatomical Biomarkers of Early Mild Cognitive Impairment [2.9027661868249255]
アルツハイマー病は重要な課題であり、効果的な介入のために早期発見が必要である。
本研究では、MRIに基づくバイオマーカーの選択と分類のための機械学習手法を解析し、5年以内に健康的なコントロールと軽度の認知障害を区別する。
論文 参考訳(メタデータ) (2024-05-29T06:12:05Z) - Super-resolution of biomedical volumes with 2D supervision [84.5255884646906]
超解像のための仮設スライス拡散は、生物学的標本のすべての空間次元にわたるデータ生成分布の固有同値性を利用する。
我々は,高解像度2次元画像の高速取得を特徴とするSliceRの組織学的刺激(SRH)への応用に着目する。
論文 参考訳(メタデータ) (2024-04-15T02:41:55Z) - SDR-Former: A Siamese Dual-Resolution Transformer for Liver Lesion
Classification Using 3D Multi-Phase Imaging [59.78761085714715]
本研究は肝病変分類のための新しいSDR-Formerフレームワークを提案する。
提案フレームワークは2つの臨床データセットに関する総合的な実験を通じて検証された。
科学コミュニティを支援するため,肝病変解析のための多段階MRデータセットを公開しています。
論文 参考訳(メタデータ) (2024-02-27T06:32:56Z) - Diagnosing Alzheimer's Disease using Early-Late Multimodal Data Fusion
with Jacobian Maps [1.5501208213584152]
アルツハイマー病(英語: Alzheimer's disease、AD)は、老化に影響を及ぼす神経変性疾患である。
本稿では,自動特徴抽出とランダム森林のための畳み込みニューラルネットワークを利用する,効率的な早期融合(ELF)手法を提案する。
脳の容積の微妙な変化を検出するという課題に対処するために、画像をヤコビ領域(JD)に変換する。
論文 参考訳(メタデータ) (2023-10-25T19:02:57Z) - Source-Free Collaborative Domain Adaptation via Multi-Perspective
Feature Enrichment for Functional MRI Analysis [55.03872260158717]
安静時MRI機能(rs-fMRI)は、神経疾患の分析を助けるために多地点で研究されている。
ソース領域とターゲット領域の間のfMRIの不均一性を低減するための多くの手法が提案されている。
しかし、マルチサイト研究における懸念やデータストレージの負担のため、ソースデータの取得は困難である。
我々は、fMRI解析のためのソースフリー協調ドメイン適応フレームワークを設計し、事前訓練されたソースモデルとラベルなしターゲットデータのみにアクセスできるようにする。
論文 参考訳(メタデータ) (2023-08-24T01:30:18Z) - Federated Learning Enables Big Data for Rare Cancer Boundary Detection [98.5549882883963]
6大陸にわたる71の医療機関のデータを含む,これまでで最大のフェデレーテッドML研究の結果を報告する。
グリオ芽腫の稀な疾患に対する腫瘍境界自動検出装置を作製した。
当科では, 外科的に標的とした腫瘍の悪性度を高めるために, 33%の改善率を示し, 腫瘍全体に対する23%の改善率を示した。
論文 参考訳(メタデータ) (2022-04-22T17:27:00Z) - A lightweight and accurate YOLO-like network for small target detection
in Aerial Imagery [94.78943497436492]
小型ターゲット検出のためのシンプルで高速で効率的なネットワークであるYOLO-Sを提案する。
YOLO-SはDarknet20をベースとした小さな特徴抽出器と、バイパスと連結の両方を通じて接続をスキップする。
YOLO-Sはパラメータサイズが87%減少し、約半分のFLOPがYOLOv3となり、低消費電力の産業用アプリケーションに実用化された。
論文 参考訳(メタデータ) (2022-04-05T16:29:49Z) - LF-YOLO: A Lighter and Faster YOLO for Weld Defect Detection of X-ray
Image [7.970559381165446]
畳み込みニューラルネットワーク(CNN)に基づく溶接欠陥検出手法,すなわちLighter and Faster YOLO(LF-YOLO)を提案する。
検出ネットワークの性能向上のために,効率的な特徴抽出(EFE)モジュールを提案する。
その結果, 溶接欠陥ネットワークは性能と消費のバランスが良好であり, 61.5 FPSの92.9 mAP50に達することがわかった。
論文 参考訳(メタデータ) (2021-10-28T12:19:32Z) - Multi-Modal Active Learning for Automatic Liver Fibrosis Diagnosis based
on Ultrasound Shear Wave Elastography [13.13249599000645]
超音波診断などの非侵襲的診断は肝線維症自動診断(ALFD)において極めて重要である
ノイズの多いデータ、アメリカの画像の高価なアノテーションのため、AI(Artificial Intelligence)アプローチの応用はボトルネックに直面する。
本研究では, ALFD のための多モード融合ネットワーク (MMFN-AL) を革新的に提案する。
論文 参考訳(メタデータ) (2020-11-02T03:05:24Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
我々は3次元畳み込みオートエンコーダを用いて、無関係な空間画像表現を実現するとともに、ABIDEデータ上で既存のアプローチより優れていることを示す。
論文 参考訳(メタデータ) (2020-10-14T16:50:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。