論文の概要: MSCA-Net:Multi-Scale Context Aggregation Network for Infrared Small Target Detection
- arxiv url: http://arxiv.org/abs/2503.17193v1
- Date: Fri, 21 Mar 2025 14:42:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-24 14:56:31.760286
- Title: MSCA-Net:Multi-Scale Context Aggregation Network for Infrared Small Target Detection
- Title(参考訳): MSCA-Net:赤外小ターゲット検出のためのマルチスケールコンテキスト集約ネットワーク
- Authors: Xiaojin Lu, Taoran yue, Jiaxi cai, Shibing Chu,
- Abstract要約: 本稿では、3つのキーコンポーネントを統合したMSCA-Netという新しいネットワークアーキテクチャを提案する。
MSEDAは、異なるスケールにわたる情報を適応的に集約するために、マルチスケールのフュージョンアテンション機構を使用している。
PCBAMは相関行列に基づく戦略によりグローバル特徴と局所特徴の相関を捉える。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Detecting infrared small targets in complex backgrounds remains a challenging task because of the low contrast and high noise levels inherent in infrared images. These factors often lead to the loss of crucial details during feature extraction. Moreover, existing detection methods have limitations in adequately integrating global and local information, which constrains the efficiency and accuracy of infrared small target detection. To address these challenges, this paper proposes a novel network architecture named MSCA-Net, which integrates three key components: Multi-Scale Enhanced Detection Attention mechanism(MSEDA), Positional Convolutional Block Attention Module (PCBAM), and Channel Aggregation Block (CAB). Specifically, MSEDA employs a multi-scale feature fusion attention mechanism to adaptively aggregate information across different scales, enriching feature representation. PCBAM captures the correlation between global and local features through a correlation matrix-based strategy, enabling deep feature interaction. Moreover, CAB redistributes input feature channels, facilitating the efficient transmission of beneficial features and further enhancing the model detection capability in complex backgrounds. The experimental results demonstrate that MSCA-Net achieves outstanding small target detection performance in complex backgrounds. Specifically, it attains mIoU scores of 78.43\%, 94.56\%, and 67.08\% on the NUAA-SIRST, NUDT-SIRST, and IRTSD-1K datasets, respectively, underscoring its effectiveness and strong potential for real-world applications.
- Abstract(参考訳): 複雑な背景における赤外線小目標の検出は、低コントラストと高ノイズレベルが赤外線画像に固有のため、依然として困難な課題である。
これらの要因は、しばしば特徴抽出中に重要な詳細が失われる。
さらに、既存の検出手法では、グローバルおよびローカル情報を適切に統合する際の限界があり、赤外小目標検出の効率と精度を制限している。
本稿では,MSEDA(Multi-Scale Enhanced Detection Attention Mechanism),PCBAM(Pational Convolutional Block Attention Module),CAB(Channel Aggregation Block)という3つの重要なコンポーネントを統合したMSCA-Netというネットワークアーキテクチャを提案する。
具体的には、MSEDAは、様々なスケールにわたる情報を適応的に集約し、特徴表現を豊かにするマルチスケール機能融合アテンション機構を採用している。
PCBAMは、相関行列に基づく戦略により、大域的特徴と局所的特徴の相関を捉え、深い特徴相互作用を可能にする。
さらに、CABは入力特徴チャネルを再分割し、有益な特徴の効率的な伝達を容易にし、複雑な背景におけるモデル検出能力をさらに強化する。
実験により,MSCA-Netは複雑な背景下での目標検出性能に優れることがわかった。
具体的には、NUAA-SIRST、NUDT-SIRST、IRTSD-1Kデータセットにおいて、mIoUスコアが78.43\%、94.56\%、67.08\%に達する。
関連論文リスト
- Renormalized Connection for Scale-preferred Object Detection in Satellite Imagery [51.83786195178233]
我々は、効率的な特徴抽出の観点から再正規化群理論を実装するために、知識発見ネットワーク(KDN)を設計する。
KDN上の再正規化接続(RC)は、マルチスケール特徴の「相乗的焦点」を可能にする。
RCはFPNベースの検出器のマルチレベル特徴の分割・対数機構を幅広いスケールで予測されたタスクに拡張する。
論文 参考訳(メタデータ) (2024-09-09T13:56:22Z) - PVAFN: Point-Voxel Attention Fusion Network with Multi-Pooling Enhancing for 3D Object Detection [59.355022416218624]
点とボクセルの表現の統合は、LiDARベースの3Dオブジェクト検出においてより一般的になりつつある。
PVAFN(Point-Voxel Attention Fusion Network)と呼ばれる新しい2段3次元物体検出器を提案する。
PVAFNはマルチプール戦略を使用して、マルチスケールとリージョン固有の情報を効果的に統合する。
論文 参考訳(メタデータ) (2024-08-26T19:43:01Z) - LR-Net: A Lightweight and Robust Network for Infrared Small Target Detection [2.6617665093172445]
我々は、革新的な軽量で堅牢なネットワーク(LR-Net)を提案する。
LR-Netは複雑な構造を放棄し、検出精度と資源消費のバランスをとる。
第3位は「ICPR 2024リソース制限赤外小ターゲット検出チャレンジトラック2:軽量赤外小ターゲット検出」である。
論文 参考訳(メタデータ) (2024-08-05T18:57:33Z) - Single-Point Supervised High-Resolution Dynamic Network for Infrared Small Target Detection [7.0456782736205685]
単一点教師付き高分解能ダイナミックネットワーク(SSHD-Net)を提案する。
単一点監視のみを用いて、最先端(SOTA)検出性能を実現する。
公開データセット NUDT-SIRST と IRSTD-1k の実験により,本手法の有効性が示された。
論文 参考訳(メタデータ) (2024-08-04T09:44:47Z) - Wavelet-based Bi-dimensional Aggregation Network for SAR Image Change Detection [53.842568573251214]
3つのSARデータセットによる実験結果から、我々のWBANetは現代最先端の手法を著しく上回っていることが明らかとなった。
我々のWBANetは、それぞれのデータセットで98.33%、96.65%、96.62%の正確な分類(PCC)を達成している。
論文 参考訳(メタデータ) (2024-07-18T04:36:10Z) - Multi-Scale Direction-Aware Network for Infrared Small Target Detection [2.661766509317245]
赤外小目標検出は、背景とターゲットを効果的に分離することが難しい問題に直面している。
我々は、赤外線小ターゲットの高周波方向特徴を統合するためのマルチスケール方向対応ネットワーク(MSDA-Net)を提案する。
MSDA-Netは、パブリックNUDT-SIRST、SIRST、IRSTD-1kデータセット上で、最先端(SOTA)結果を達成する。
論文 参考訳(メタデータ) (2024-06-04T07:23:09Z) - Point-aware Interaction and CNN-induced Refinement Network for RGB-D Salient Object Detection [95.84616822805664]
我々は,CNNによるトランスフォーマーアーキテクチャを導入し,ポイント・アウェア・インタラクションとCNNによるリファインメントを備えた新しいRGB-D SODネットワークを提案する。
トランスフォーマーがもたらすブロック効果とディテール破壊問題を自然に軽減するために,コンテンツリファインメントとサプリメントのためのCNNRユニットを設計する。
論文 参考訳(メタデータ) (2023-08-17T11:57:49Z) - Infrared Small-Dim Target Detection with Transformer under Complex
Backgrounds [155.388487263872]
変換器を用いた赤外線小径目標検出手法を提案する。
画像特徴の相互作用情報をより広い範囲で学習するために,変換器の自己認識機構を採用する。
最小限のターゲットの機能を学習するための機能拡張モジュールも設計しています。
論文 参考訳(メタデータ) (2021-09-29T12:23:41Z) - Dense Nested Attention Network for Infrared Small Target Detection [36.654692765557726]
単一フレーム赤外線小ターゲット(SIRST)検出は、小さなターゲットを乱雑な背景から分離することを目的としている。
既存のCNNベースのメソッドは、赤外線小ターゲットに対して直接適用することはできない。
本稿では,高密度ネステッドアテンションネットワーク(DNANet)を提案する。
論文 参考訳(メタデータ) (2021-06-01T13:45:35Z) - Towards Accurate RGB-D Saliency Detection with Complementary Attention
and Adaptive Integration [20.006932559837516]
近年,RGB画像と深度マップの相補的情報に基づく残差検出が盛んに行われている。
本稿では,補完的注意に基づく特徴集中と適応的クロスモーダル特徴融合を統合するための補完的注意・適応統合ネットワーク(CAAI-Net)を提案する。
CAAI-Netは効果的な唾液濃度検出モデルであり、4つの広く使用されているメトリクスで9つの最先端モデルを上回っている。
論文 参考訳(メタデータ) (2021-02-08T08:08:30Z) - Global Context-Aware Progressive Aggregation Network for Salient Object
Detection [117.943116761278]
我々は,低レベルな外観特徴,高レベルな意味特徴,グローバルな文脈特徴を統合化するための新しいネットワークGCPANetを提案する。
提案手法は, 定量的かつ定性的に, 最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-03-02T04:26:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。