Mixture of partially linear experts
- URL: http://arxiv.org/abs/2405.02905v1
- Date: Sun, 5 May 2024 12:10:37 GMT
- Title: Mixture of partially linear experts
- Authors: Yeongsan Hwang, Byungtae Seo, Sangkon Oh,
- Abstract summary: We propose a partially linear structure that incorporates unspecified functions to capture nonlinear relationships.
We establish the identifiability of the proposed model under mild conditions and introduce a practical estimation algorithm.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the mixture of experts model, a common assumption is the linearity between a response variable and covariates. While this assumption has theoretical and computational benefits, it may lead to suboptimal estimates by overlooking potential nonlinear relationships among the variables. To address this limitation, we propose a partially linear structure that incorporates unspecified functions to capture nonlinear relationships. We establish the identifiability of the proposed model under mild conditions and introduce a practical estimation algorithm. We present the performance of our approach through numerical studies, including simulations and real data analysis.
Related papers
- Induced Covariance for Causal Discovery in Linear Sparse Structures [55.2480439325792]
Causal models seek to unravel the cause-effect relationships among variables from observed data.
This paper introduces a novel causal discovery algorithm designed for settings in which variables exhibit linearly sparse relationships.
arXiv Detail & Related papers (2024-10-02T04:01:38Z) - Bayesian Inference for Consistent Predictions in Overparameterized Nonlinear Regression [0.0]
This study explores the predictive properties of over parameterized nonlinear regression within the Bayesian framework.
Posterior contraction is established for generalized linear and single-neuron models with Lipschitz continuous activation functions.
The proposed method was validated via numerical simulations and a real data application.
arXiv Detail & Related papers (2024-04-06T04:22:48Z) - Estimation Sample Complexity of a Class of Nonlinear Continuous-time Systems [0.0]
We present a method of parameter estimation for large class of nonlinear systems, namely those in which the state consists of output derivatives and the flow is linear in the parameter.
The method, which solves for the unknown parameter by directly inverting the dynamics using regularized linear regression, is based on new design and analysis ideas for differentiation filtering and regularized least squares.
arXiv Detail & Related papers (2023-12-08T21:42:11Z) - Selective Nonparametric Regression via Testing [54.20569354303575]
We develop an abstention procedure via testing the hypothesis on the value of the conditional variance at a given point.
Unlike existing methods, the proposed one allows to account not only for the value of the variance itself but also for the uncertainty of the corresponding variance predictor.
arXiv Detail & Related papers (2023-09-28T13:04:11Z) - RIGID: Robust Linear Regression with Missing Data [7.638042073679073]
We present a robust framework to perform linear regression with missing entries in the features.
We show that the proposed formulation, which naturally takes into account the dependency between different variables, reduces to a convex program.
In addition to a detailed analysis, we also analyze the behavior of the proposed framework, and present technical discussions.
arXiv Detail & Related papers (2022-05-26T21:10:17Z) - Learning from few examples with nonlinear feature maps [68.8204255655161]
We explore the phenomenon and reveal key relationships between dimensionality of AI model's feature space, non-degeneracy of data distributions, and the model's generalisation capabilities.
The main thrust of our present analysis is on the influence of nonlinear feature transformations mapping original data into higher- and possibly infinite-dimensional spaces on the resulting model's generalisation capabilities.
arXiv Detail & Related papers (2022-03-31T10:36:50Z) - Hessian Eigenspectra of More Realistic Nonlinear Models [73.31363313577941]
We make a emphprecise characterization of the Hessian eigenspectra for a broad family of nonlinear models.
Our analysis takes a step forward to identify the origin of many striking features observed in more complex machine learning models.
arXiv Detail & Related papers (2021-03-02T06:59:52Z) - Nonlinear Independent Component Analysis for Continuous-Time Signals [85.59763606620938]
We study the classical problem of recovering a multidimensional source process from observations of mixtures of this process.
We show that this recovery is possible for many popular models of processes (up to order and monotone scaling of their coordinates) if the mixture is given by a sufficiently differentiable, invertible function.
arXiv Detail & Related papers (2021-02-04T20:28:44Z) - Learning Fast Approximations of Sparse Nonlinear Regression [50.00693981886832]
In this work, we bridge the gap by introducing the Threshold Learned Iterative Shrinkage Algorithming (NLISTA)
Experiments on synthetic data corroborate our theoretical results and show our method outperforms state-of-the-art methods.
arXiv Detail & Related papers (2020-10-26T11:31:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.