Fast TILs estimation in lung cancer WSIs based on semi-stochastic patch sampling
- URL: http://arxiv.org/abs/2405.02913v1
- Date: Sun, 5 May 2024 12:41:55 GMT
- Title: Fast TILs estimation in lung cancer WSIs based on semi-stochastic patch sampling
- Authors: Nikita Shvetsov, Anders Sildnes, Lill-Tove Rasmussen Busund, Stig Dalen, Kajsa Møllersen, Lars Ailo Bongo, Thomas K. Kilvaer,
- Abstract summary: The pipeline efficiently excludes approximately 70% of areas not relevant for prognosis and requires only 5% of the remaining patches to maintain prognostic accuracy.
The pipeline demonstrates potential for enhancing NSCLC prognostication and personalization of treatment.
Future research should focus on verifying its broader clinical utility and investigating additional biomarkers to improve NSCLC prognosis.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Addressing the critical need for accurate prognostic biomarkers in cancer treatment, quantifying tumor-infiltrating lymphocytes (TILs) in non-small cell lung cancer (NSCLC) presents considerable challenges. Manual TIL quantification in whole slide images (WSIs) is laborious and subject to variability, potentially undermining patient outcomes. Our study introduces an automated pipeline that utilizes semi-stochastic patch sampling, patch classification to retain prognostically relevant patches, and cell quantification using the HoVer-Net model to streamline the TIL evaluation process. This pipeline efficiently excludes approximately 70% of areas not relevant for prognosis and requires only 5% of the remaining patches to maintain prognostic accuracy (c-index 0.65 +- 0.01). The computational efficiency achieved does not sacrifice prognostic accuracy, as demonstrated by the TILs score's strong correlation with patient survival, which surpasses traditional CD8 IHC scoring methods. While the pipeline demonstrates potential for enhancing NSCLC prognostication and personalization of treatment, comprehensive clinical validation is still required. Future research should focus on verifying its broader clinical utility and investigating additional biomarkers to improve NSCLC prognosis.
Related papers
- Optimizing Lung Cancer Detection in CT Imaging: A Wavelet Multi-Layer Perceptron (WMLP) Approach Enhanced by Dragonfly Algorithm (DA) [0.294944680995069]
This study introduces a cutting-edge deep learning framework for the classification of lung cancer from CT scan imagery.
The research encompasses a suite of image pre-processing strategies, notably Canny edge detection, and wavelet transformations.
The methodology put forth has attained an impressive training and testing accuracy of 99.82%, underscoring its efficacy and reliability in the accurate diagnosis of lung cancer.
arXiv Detail & Related papers (2024-08-27T18:27:47Z) - Boosting Medical Image-based Cancer Detection via Text-guided Supervision from Reports [68.39938936308023]
We propose a novel text-guided learning method to achieve highly accurate cancer detection results.
Our approach can leverage clinical knowledge by large-scale pre-trained VLM to enhance generalization ability.
arXiv Detail & Related papers (2024-05-23T07:03:38Z) - Using Multiparametric MRI with Optimized Synthetic Correlated Diffusion Imaging to Enhance Breast Cancer Pathologic Complete Response Prediction [71.91773485443125]
Neoadjuvant chemotherapy has recently gained popularity as a promising treatment strategy for breast cancer.
The current process to recommend neoadjuvant chemotherapy relies on the subjective evaluation of medical experts.
This research investigates the application of optimized CDI$s$ to enhance breast cancer pathologic complete response prediction.
arXiv Detail & Related papers (2024-05-13T15:40:56Z) - EXACT-Net:EHR-guided lung tumor auto-segmentation for non-small cell lung cancer radiotherapy [7.531407604292937]
Over 60% of non-small cell lung cancer (NSCLC) patients require radiation therapy.
Our approach resulted in a 250% boost in successful nodule detection using the data from ten NSCLC patients treated in our institution.
arXiv Detail & Related papers (2024-02-21T19:49:12Z) - Semi-supervised ViT knowledge distillation network with style transfer
normalization for colorectal liver metastases survival prediction [1.283897253352624]
We propose an end-to-end approach for automated prognosis prediction using histology slides stained with H&E and HPS.
We first employ a Generative Adversarial Network (GAN) for slide normalization to reduce staining variations and improve the overall quality of the images that are used as input to our prediction pipeline.
We exploit the extracted features for the metastatic nodules and surrounding tissue to train a prognosis model. In parallel, we train a vision Transformer (ViT) in a knowledge distillation framework to replicate and enhance the performance of the prognosis prediction.
arXiv Detail & Related papers (2023-11-17T03:32:11Z) - Predicting Ovarian Cancer Treatment Response in Histopathology using
Hierarchical Vision Transformers and Multiple Instance Learning [2.0661578265672094]
Deep learning can be used to predict whether a course of treatment could contribute to remission or prevent disease progression in ovarian cancer patients.
Our approach used a pretrained Hierarchical Image Pyramid Transformer (HIPT) to extract region-level features and an attention-based multiple instance learning (ABMIL) model to aggregate features and classify whole slides.
It is not yet clear whether ovarian cancer WSIs contain information that can be used to accurately predict treatment response, with further validation using larger, higher-quality datasets required.
arXiv Detail & Related papers (2023-10-19T16:16:29Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
We propose to leverage transfer learning from large datasets annotated by radiologists, to predict the histological score available on a small annex dataset.
We compare different pretraining methods, namely weakly-supervised and self-supervised ones, to improve the prediction of the cirrhosis.
This method outperforms the baseline classification of the METAVIR score, reaching an AUC of 0.84 and a balanced accuracy of 0.75.
arXiv Detail & Related papers (2023-02-16T17:06:23Z) - A Pragmatic Machine Learning Approach to Quantify Tumor Infiltrating
Lymphocytes in Whole Slide Images [0.0]
Increased levels of tumor infiltrating lymphocytes (TILs) in cancer tissue indicate favourable outcomes in many types of cancer.
Our aim is to leverage a computational solution to automatically quantify TILs in whole slide images (WSIs) of standard diagnostic haematoxylin and eosin stained sections (H&E slides) from lung cancer patients.
arXiv Detail & Related papers (2022-02-14T10:22:10Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - Controlling False Positive/Negative Rates for Deep-Learning-Based
Prostate Cancer Detection on Multiparametric MR images [58.85481248101611]
We propose a novel PCa detection network that incorporates a lesion-level cost-sensitive loss and an additional slice-level loss based on a lesion-to-slice mapping function.
Our experiments based on 290 clinical patients concludes that 1) The lesion-level FNR was effectively reduced from 0.19 to 0.10 and the lesion-level FPR was reduced from 1.03 to 0.66 by changing the lesion-level cost.
arXiv Detail & Related papers (2021-06-04T09:51:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.