Optimizing Lung Cancer Detection in CT Imaging: A Wavelet Multi-Layer Perceptron (WMLP) Approach Enhanced by Dragonfly Algorithm (DA)
- URL: http://arxiv.org/abs/2408.15355v1
- Date: Tue, 27 Aug 2024 18:27:47 GMT
- Title: Optimizing Lung Cancer Detection in CT Imaging: A Wavelet Multi-Layer Perceptron (WMLP) Approach Enhanced by Dragonfly Algorithm (DA)
- Authors: Bitasadat Jamshidi, Nastaran Ghorbani, Mohsen Rostamy-Malkhalifeh,
- Abstract summary: This study introduces a cutting-edge deep learning framework for the classification of lung cancer from CT scan imagery.
The research encompasses a suite of image pre-processing strategies, notably Canny edge detection, and wavelet transformations.
The methodology put forth has attained an impressive training and testing accuracy of 99.82%, underscoring its efficacy and reliability in the accurate diagnosis of lung cancer.
- Score: 0.294944680995069
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Lung cancer stands as the preeminent cause of cancer-related mortality globally. Prompt and precise diagnosis, coupled with effective treatment, is imperative to reduce the fatality rates associated with this formidable disease. This study introduces a cutting-edge deep learning framework for the classification of lung cancer from CT scan imagery. The research encompasses a suite of image pre-processing strategies, notably Canny edge detection, and wavelet transformations, which precede the extraction of salient features and subsequent classification via a Multi-Layer Perceptron (MLP). The optimization process is further refined using the Dragonfly Algorithm (DA). The methodology put forth has attained an impressive training and testing accuracy of 99.82\%, underscoring its efficacy and reliability in the accurate diagnosis of lung cancer.
Related papers
- MSDet: Receptive Field Enhanced Multiscale Detection for Tiny Pulmonary Nodule [17.838015589388014]
Pulmonary nodules are critical indicators for the early diagnosis of lung cancer.
Traditional CT imaging methods suffered from cumbersome procedures, low detection rates, and poor localization accuracy.
This paper proposes MSDet, a multiscale attention and receptive field network for detecting tiny pulmonary nodules.
arXiv Detail & Related papers (2024-09-21T06:08:23Z) - Boosting Medical Image-based Cancer Detection via Text-guided Supervision from Reports [68.39938936308023]
We propose a novel text-guided learning method to achieve highly accurate cancer detection results.
Our approach can leverage clinical knowledge by large-scale pre-trained VLM to enhance generalization ability.
arXiv Detail & Related papers (2024-05-23T07:03:38Z) - Optimizing Synthetic Correlated Diffusion Imaging for Breast Cancer Tumour Delineation [71.91773485443125]
We show that the best AUC is achieved by the CDI$s$ - optimized modality, outperforming the best gold-standard modality by 0.0044.
Notably, the optimized CDI$s$ modality also achieves AUC values over 0.02 higher than the Unoptimized CDI$s$ value.
arXiv Detail & Related papers (2024-05-13T16:07:58Z) - Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
Grading plays a vital role in breast cancer treatment planning.
The current tumor grading method involves extracting tissue from patients, leading to stress, discomfort, and high medical costs.
This paper examines using optimized CDI$s$ to improve breast cancer grade prediction.
arXiv Detail & Related papers (2024-05-13T15:48:26Z) - Using Multiparametric MRI with Optimized Synthetic Correlated Diffusion Imaging to Enhance Breast Cancer Pathologic Complete Response Prediction [71.91773485443125]
Neoadjuvant chemotherapy has recently gained popularity as a promising treatment strategy for breast cancer.
The current process to recommend neoadjuvant chemotherapy relies on the subjective evaluation of medical experts.
This research investigates the application of optimized CDI$s$ to enhance breast cancer pathologic complete response prediction.
arXiv Detail & Related papers (2024-05-13T15:40:56Z) - Double Integral Enhanced Zeroing Neural Network Optimized with ALSOA
fostered Lung Cancer Classification using CT Images [1.1510009152620668]
Lung cancer is one of the deadliest diseases and the leading cause of illness and death.
The proposed method attains 18.32%, 27.20%, and 34.32% higher accuracy analyzed with existing method.
arXiv Detail & Related papers (2023-12-05T10:53:35Z) - Hybrid Whale-Mud-Ring Optimization for Precise Color Skin Cancer Image
Segmentation [2.674706888799469]
Dermoscopy, a dependable and accessible tool, plays a pivotal role in the initial stages of skin cancer detection.
The effective processing of digital dermoscopy images holds significant importance in elevating the accuracy of skin cancer diagnoses.
In this paper, an enhanced version of the Mud Ring Algorithm hybridized with the Whale Optimization Algorithm, named WMRA, is proposed.
arXiv Detail & Related papers (2023-11-22T16:35:43Z) - Intelligent Breast Cancer Diagnosis with Heuristic-assisted
Trans-Res-U-Net and Multiscale DenseNet using Mammogram Images [0.0]
Breast cancer (BC) significantly contributes to cancer-related mortality in women.
accurately distinguishing malignant mass lesions remains challenging.
We propose a novel deep learning approach for BC screening utilizing mammography images.
arXiv Detail & Related papers (2023-10-30T10:22:14Z) - Cancer-Net BCa-S: Breast Cancer Grade Prediction using Volumetric Deep
Radiomic Features from Synthetic Correlated Diffusion Imaging [82.74877848011798]
The prevalence of breast cancer continues to grow, affecting about 300,000 females in the United States in 2023.
The gold-standard Scarff-Bloom-Richardson (SBR) grade has been shown to consistently indicate a patient's response to chemotherapy.
In this paper, we study the efficacy of deep learning for breast cancer grading based on synthetic correlated diffusion (CDI$s$) imaging.
arXiv Detail & Related papers (2023-04-12T15:08:34Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - 3D Neural Network for Lung Cancer Risk Prediction on CT Volumes [0.6810862244331126]
Lung cancer is the most common cause of cancer death in the United States.
Lung cancer CT screening has been shown to reduce mortality by up to 40% and is now included in US screening guidelines.
Despite the use of standards for radiological diagnosis, persistent inter-grader variability and incomplete characterization of comprehensive imaging findings remain as limitations of current methods.
In this report, we reproduce a state-of-the-art deep learning algorithm for lung cancer risk prediction.
arXiv Detail & Related papers (2020-07-25T10:01:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.