Imaging Signal Recovery Using Neural Network Priors Under Uncertain Forward Model Parameters
- URL: http://arxiv.org/abs/2405.02944v1
- Date: Sun, 5 May 2024 14:12:48 GMT
- Title: Imaging Signal Recovery Using Neural Network Priors Under Uncertain Forward Model Parameters
- Authors: Xiwen Chen, Wenhui Zhu, Peijie Qiu, Abolfazl Razi,
- Abstract summary: Inverse imaging problems (IIPs) arise in various applications, with the main objective of reconstructing an image from its compressed measurements.
We propose a novel Moment-Aggregation (MA) framework that is compatible with the popular IIP solution by using a neural network prior.
We theoretically demonstrate the convergence of the MA framework, which has a similar complexity with reconstruction under the known forward model parameters.
- Score: 0.7724713939814069
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Inverse imaging problems (IIPs) arise in various applications, with the main objective of reconstructing an image from its compressed measurements. This problem is often ill-posed for being under-determined with multiple interchangeably consistent solutions. The best solution inherently depends on prior knowledge or assumptions, such as the sparsity of the image. Furthermore, the reconstruction process for most IIPs relies significantly on the imaging (i.e. forward model) parameters, which might not be fully known, or the measurement device may undergo calibration drifts. These uncertainties in the forward model create substantial challenges, where inaccurate reconstructions usually happen when the postulated parameters of the forward model do not fully match the actual ones. In this work, we devoted to tackling accurate reconstruction under the context of a set of possible forward model parameters that exist. Here, we propose a novel Moment-Aggregation (MA) framework that is compatible with the popular IIP solution by using a neural network prior. Specifically, our method can reconstruct the signal by considering all candidate parameters of the forward model simultaneously during the update of the neural network. We theoretically demonstrate the convergence of the MA framework, which has a similar complexity with reconstruction under the known forward model parameters. Proof-of-concept experiments demonstrate that the proposed MA achieves performance comparable to the forward model with the known precise parameter in reconstruction across both compressive sensing and phase retrieval applications, with a PSNR gap of 0.17 to 1.94 over various datasets, including MNIST, X-ray, Glas, and MoNuseg. This highlights our method's significant potential in reconstruction under an uncertain forward model.
Related papers
- Unifying Subsampling Pattern Variations for Compressed Sensing MRI with Neural Operators [72.79532467687427]
Compressed Sensing MRI reconstructs images of the body's internal anatomy from undersampled and compressed measurements.
Deep neural networks have shown great potential for reconstructing high-quality images from highly undersampled measurements.
We propose a unified model that is robust to different subsampling patterns and image resolutions in CS-MRI.
arXiv Detail & Related papers (2024-10-05T20:03:57Z) - Efficient One-Step Diffusion Refinement for Snapshot Compressive Imaging [8.819370643243012]
Coded Aperture Snapshot Spectral Imaging (CASSI) is a crucial technique for capturing three-dimensional multispectral images (MSIs)
Current state-of-the-art methods, predominantly end-to-end, face limitations in reconstructing high-frequency details.
This paper introduces a novel one-step Diffusion Probabilistic Model within a self-supervised adaptation framework for Snapshot Compressive Imaging.
arXiv Detail & Related papers (2024-09-11T17:02:10Z) - SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
We present an innovative approach to model fusion called zero-shot Sparse MIxture of Low-rank Experts (SMILE) construction.
SMILE allows for the upscaling of source models into an MoE model without extra data or further training.
We conduct extensive experiments across diverse scenarios, such as image classification and text generation tasks, using full fine-tuning and LoRA fine-tuning.
arXiv Detail & Related papers (2024-08-19T17:32:15Z) - Fill the K-Space and Refine the Image: Prompting for Dynamic and
Multi-Contrast MRI Reconstruction [31.404228406642194]
The key to dynamic or multi-contrast magnetic resonance imaging (MRI) reconstruction lies in exploring inter-frame or inter-contrast information.
We propose a two-stage MRI reconstruction pipeline to address these limitations.
Our proposed method significantly outperforms previous state-of-the-art accelerated MRI reconstruction methods.
arXiv Detail & Related papers (2023-09-25T02:51:00Z) - Unfolding Framework with Prior of Convolution-Transformer Mixture and
Uncertainty Estimation for Video Snapshot Compressive Imaging [7.601695814245209]
We consider the problem of video snapshot compressive imaging (SCI), where sequential high-speed frames are modulated by different masks and captured by a single measurement.
By combining optimization algorithms and neural networks, deep unfolding networks (DUNs) score tremendous achievements in solving inverse problems.
arXiv Detail & Related papers (2023-06-20T06:25:48Z) - Stable Deep MRI Reconstruction using Generative Priors [13.400444194036101]
We propose a novel deep neural network based regularizer which is trained in a generative setting on reference magnitude images only.
The results demonstrate competitive performance, on par with state-of-the-art end-to-end deep learning methods.
arXiv Detail & Related papers (2022-10-25T08:34:29Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
We show how to unfold an iterative MGDUN algorithm into a novel model-guided deep unfolding network by taking the MRI observation matrix.
In this paper, we propose a novel Model-Guided interpretable Deep Unfolding Network (MGDUN) for medical image SR reconstruction.
arXiv Detail & Related papers (2022-09-15T03:58:30Z) - Towards performant and reliable undersampled MR reconstruction via
diffusion model sampling [67.73698021297022]
DiffuseRecon is a novel diffusion model-based MR reconstruction method.
It guides the generation process based on the observed signals.
It does not require additional training on specific acceleration factors.
arXiv Detail & Related papers (2022-03-08T02:25:38Z) - 3D Human Pose and Shape Regression with Pyramidal Mesh Alignment
Feedback Loop [128.07841893637337]
Regression-based methods have recently shown promising results in reconstructing human meshes from monocular images.
Minor deviation in parameters may lead to noticeable misalignment between the estimated meshes and image evidences.
We propose a Pyramidal Mesh Alignment Feedback (PyMAF) loop to leverage a feature pyramid and rectify the predicted parameters.
arXiv Detail & Related papers (2021-03-30T17:07:49Z) - PaMIR: Parametric Model-Conditioned Implicit Representation for
Image-based Human Reconstruction [67.08350202974434]
We propose Parametric Model-Conditioned Implicit Representation (PaMIR), which combines the parametric body model with the free-form deep implicit function.
We show that our method achieves state-of-the-art performance for image-based 3D human reconstruction in the cases of challenging poses and clothing types.
arXiv Detail & Related papers (2020-07-08T02:26:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.