Efficient discrimination between real and complex quantum theories
- URL: http://arxiv.org/abs/2405.03013v1
- Date: Sun, 5 May 2024 17:47:31 GMT
- Title: Efficient discrimination between real and complex quantum theories
- Authors: Josep Batle, Tomasz Białecki, Tomasz Rybotycki, Jakub Tworzydło, Adam Bednorz,
- Abstract summary: We show the impossibility of a quantum theory based on real numbers by a larger ratio of complex-to-real bound on a Bell-type parameter.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We improve the test to show the impossibility of a quantum theory based on real numbers by a larger ratio of complex-to-real bound on a Bell-type parameter. In contrast to previous theoretical and experimental proposals the test requires three setting for the parties $A$ and $C$, but also six settings for the middle party $B$, assuming separability of the sources. The bound for this symmetric configuration imposed on a real theory is $14.88$ whilst the complex maximum is $18$. This large theoretical difference enables us to demonstrate the concomitant experimental violation on IBM quantum computer via a designed quantum network, obtaining as a result $15.44$ at more than $80$ standard deviations above the real bound.
Related papers
- Nature cannot be described by any causal theory with a finite number of measurements [0.0]
We show that there exists quantum correlations obtained from performing $n$ dichotomic quantum measurements in a bipartite Bell scenario.
That is, it requires any no-signaling theory an unbounded number of measurements to reproduce the predictions of quantum theory.
arXiv Detail & Related papers (2024-08-15T18:00:00Z) - Measuring a "Probability" $> 1$ [0.0]
Quantum Measure Theory (QMT) generalizes the concept of probability-measure so as to incorporate quantum interference.
Here we study the two-site hopper within the context of QMT.
In an optical experiment, we determine the measure of a specific hopper event, using an ancilla based event filtering scheme.
arXiv Detail & Related papers (2024-07-22T15:09:47Z) - Towards large-scale quantum optimization solvers with few qubits [59.63282173947468]
We introduce a variational quantum solver for optimizations over $m=mathcalO(nk)$ binary variables using only $n$ qubits, with tunable $k>1$.
We analytically prove that the specific qubit-efficient encoding brings in a super-polynomial mitigation of barren plateaus as a built-in feature.
arXiv Detail & Related papers (2024-01-17T18:59:38Z) - Simulation of IBM's kicked Ising experiment with Projected Entangled
Pair Operator [71.10376783074766]
We perform classical simulations of the 127-qubit kicked Ising model, which was recently emulated using a quantum circuit with error mitigation.
Our approach is based on the projected entangled pair operator (PEPO) in the Heisenberg picture.
We develop a Clifford expansion theory to compute exact expectation values and use them to evaluate algorithms.
arXiv Detail & Related papers (2023-08-06T10:24:23Z) - Comparative study of adaptive variational quantum eigensolvers for
multi-orbital impurity models [0.31317409221921144]
We compare the performance of different variational quantum eigensolvers in ground state preparation for interacting multi-orbital embedding impurity models.
We show that state preparation with fidelities better than $99.9%$ can be achieved using about $214$ shots per measurement circuit.
arXiv Detail & Related papers (2022-03-13T19:49:33Z) - Testing real quantum theory in an optical quantum network [1.6720048283946962]
We show that tests in the spirit of a Bell inequality can reveal quantum predictions in entanglement swapping scenarios.
We disproving real quantum theory as a universal physical theory.
arXiv Detail & Related papers (2021-11-30T05:09:36Z) - Permutation Compressors for Provably Faster Distributed Nonconvex
Optimization [68.8204255655161]
We show that the MARINA method of Gorbunov et al (2021) can be considered as a state-of-the-art method in terms of theoretical communication complexity.
Theory of MARINA to support the theory of potentially em correlated compressors, extends to the method beyond the classical independent compressors setting.
arXiv Detail & Related papers (2021-10-07T09:38:15Z) - Primitive Quantum Gates for Dihedral Gauge Theories [0.0]
We describe the simulation of dihedral gauge theories on digital quantum computers.
The nonabelian discrete gauge group $D_N$ serves as an approximation to $U(1)timesbbZ$ lattice gauge theory.
arXiv Detail & Related papers (2021-08-30T15:16:47Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Quantum double aspects of surface code models [77.34726150561087]
We revisit the Kitaev model for fault tolerant quantum computing on a square lattice with underlying quantum double $D(G)$ symmetry.
We show how our constructions generalise to $D(H)$ models based on a finite-dimensional Hopf algebra $H$.
arXiv Detail & Related papers (2021-06-25T17:03:38Z) - $\PT$ Symmetry and Renormalisation in Quantum Field Theory [62.997667081978825]
Quantum systems governed by non-Hermitian Hamiltonians with $PT$ symmetry are special in having real energy eigenvalues bounded below and unitary time evolution.
We show how $PT$ symmetry may allow interpretations that evade ghosts and instabilities present in an interpretation of the theory within a Hermitian framework.
arXiv Detail & Related papers (2021-03-27T09:46:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.