Measuring a "Probability" $> 1$
- URL: http://arxiv.org/abs/2407.15702v1
- Date: Mon, 22 Jul 2024 15:09:47 GMT
- Title: Measuring a "Probability" $> 1$
- Authors: Sanchari Chakraborti, Rafael D. Sorkin, Urbasi Sinha,
- Abstract summary: Quantum Measure Theory (QMT) generalizes the concept of probability-measure so as to incorporate quantum interference.
Here we study the two-site hopper within the context of QMT.
In an optical experiment, we determine the measure of a specific hopper event, using an ancilla based event filtering scheme.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The history based formalism known as Quantum Measure Theory (QMT) generalizes the concept of probability-measure so as to incorporate quantum interference. Because interference can result in a greater intensity than the simple sum of the component intensities, the \textit{quantum measure} can exceed unity, exhibiting its non-classical nature in a particularly striking manner. Here we study the two-site hopper within the context of QMT; and in an optical experiment, we determine the measure of a specific hopper event, using an ancilla based event filtering scheme. For this measure we report a value of $1.172$, which exceeds the maximum value permissible for a classical probability (namely $1$) by $13.3$ standard deviations. If an unconventional theoretical concept is to play a role in meeting the foundational challenges of quantum theory, then it seems important to bring it into contact with experiment as much as possible. Our experiment does this for the quantum measure.
Related papers
- Certifying the quantumness of a nuclear spin qudit through its uniform precession [28.4073170440133]
We certify the quantumness of exotic states of a nuclear spin through its uniform precession.
The experiment is performed on a single spin-7/2 $123$Sb nucleus implanted in a silicon nanoelectronic device.
arXiv Detail & Related papers (2024-10-10T06:20:41Z) - A computational test of quantum contextuality, and even simpler proofs of quantumness [43.25018099464869]
We show that an arbitrary contextuality game can be compiled into an operational "test of contextuality" involving a single quantum device.
Our work can be seen as using cryptography to enforce spatial separation within subsystems of a single quantum device.
arXiv Detail & Related papers (2024-05-10T19:30:23Z) - Testing Quantum Gravity using Pulsed Optomechanical Systems [13.650870855008112]
We consider the Schr"odinger-Newton (SN) theory and the Correlated Worldline (CWL) theory, and show that they can be distinguished from conventional quantum mechanics.
We find that discriminating between the theories will be very difficult until experimental control over low frequency quantum optomechanical systems is pushed further.
arXiv Detail & Related papers (2023-11-03T17:06:57Z) - Quantum Heavy-tailed Bandits [36.458771174473924]
We study multi-armed bandits (MAB) and linear bandits (SLB) with heavy-tailed rewards and quantum reward.
We first propose a new quantum mean estimator for heavy-tailed distributions, which is based on the Quantum Monte Carlo Estimator.
Based on our quantum mean estimator, we focus on quantum heavy-tailed MAB and SLB and propose quantum algorithms based on the Upper Confidence Bound (UCB) framework.
arXiv Detail & Related papers (2023-01-23T19:23:10Z) - Advantages of quantum mechanics in the estimation theory [0.0]
In quantum theory, the situation with operators is different due to its non-commutativity nature.
We formulate, with complete generality, the quantum estimation theory for Gaussian states in terms of their first and second moments.
arXiv Detail & Related papers (2022-11-13T18:03:27Z) - Measurement and Probability in Relativistic Quantum Mechanics [0.0]
This paper provides a relativistic model of measurement, in which the state of the universe is decomposed into decoherent histories of measurements recorded within it.
The wave functions that we actually use for such experiments are local reductions of very coarse-grained superpositions of universal eigenstates.
arXiv Detail & Related papers (2022-09-26T04:21:52Z) - Quantum security and theory of decoherence [0.0]
We investigate how the standard cryptographic assumption of shielded laboratory, stating that data generated by a secure quantum device remain private unless explicitly published, is disturbed by the einselection mechanism of quantum Darwinism.
We derive a trade-off relation between eavesdropper's guessing probability $P_guess$ and the collective decoherence factor $Gamma.
arXiv Detail & Related papers (2022-05-25T17:25:28Z) - Quantum Causal Inference in the Presence of Hidden Common Causes: an
Entropic Approach [34.77250498401055]
We put forth a new theoretical framework for merging quantum information science and causal inference by exploiting entropic principles.
We apply our proposed framework to an experimentally relevant scenario of identifying message senders on quantum noisy links.
This approach can lay the foundations of identifying originators of malicious activity on future multi-node quantum networks.
arXiv Detail & Related papers (2021-04-24T22:45:50Z) - Probing quantum effects with classical stochastic analogs [0.0]
We propose a method to construct a classical analog of an open quantum system.
The classical analog is made out of a collection of identical wells where classical particles of mass $m$ are trapped.
arXiv Detail & Related papers (2020-12-13T18:02:27Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z) - Probing the Universality of Topological Defect Formation in a Quantum
Annealer: Kibble-Zurek Mechanism and Beyond [46.39654665163597]
We report on experimental tests of topological defect formation via the one-dimensional transverse-field Ising model.
We find that the quantum simulator results can indeed be explained by the KZM for open-system quantum dynamics with phase-flip errors.
This implies that the theoretical predictions of the generalized KZM theory, which assumes isolation from the environment, applies beyond its original scope to an open system.
arXiv Detail & Related papers (2020-01-31T02:55:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.