On the use of dynamical systems in cryptography
- URL: http://arxiv.org/abs/2405.03038v1
- Date: Sun, 5 May 2024 19:59:49 GMT
- Title: On the use of dynamical systems in cryptography
- Authors: Samuel Everett,
- Abstract summary: This paper provides a new algorithm that can be used to attack -- and hence test the security of -- stream ciphers based on the iteration of a chaotic map of the interval.
The second is to cast discrete dynamical systems problems in a modern cryptographic and complexity theoretic language, so that researchers working in chaos-based cryptography can begin designing cryptographic protocols.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ever since the link between nonlinear science and cryptography became apparent, the problem of applying chaotic dynamics to the construction of cryptographic systems has gained a broad audience and has been the subject of thousands of papers. Yet, the field has not found its place in mainstream cryptography, largely due to persistent weaknesses in the presented systems. The goal of this paper is to help remedy this problem in two ways. The first is by providing a new algorithm that can be used to attack -- and hence test the security of -- stream ciphers based on the iteration of a chaotic map of the interval. The second is to cast discrete dynamical systems problems in a modern cryptographic and complexity theoretic language, so that researchers working in chaos-based cryptography can begin designing cryptographic protocols that have a better chance of meeting the extreme standards of modern cryptography.
Related papers
- Revocable Encryption, Programs, and More: The Case of Multi-Copy Security [48.53070281993869]
We show the feasibility of revocable primitives, such as revocable encryption and revocable programs.
This suggests that the stronger notion of multi-copy security is within reach in unclonable cryptography.
arXiv Detail & Related papers (2024-10-17T02:37:40Z) - Lattice-Based Vulnerabilities in Lee Metric Post-Quantum Cryptosystems [3.277820036565198]
Post-quantum cryptography has gained attention due to the need for secure cryptographic systems in the face of quantum computing.
We consider a generic Lee metric based McEliece type cryptosystem and evaluate its security against lattice-based attacks.
arXiv Detail & Related papers (2024-09-24T12:21:33Z) - Insights Gained after a Decade of Cellular Automata-based Cryptography [0.9790236766474201]
Cellular Automata (CA) have been extensively used to implement symmetric cryptographic primitives.
Most of the research in this field, except the very early works, seems to be published in non-cryptographic venues.
This paper provides insights into this question by briefly outlining the history of CA-based cryptography.
arXiv Detail & Related papers (2024-05-05T10:10:28Z) - Provably Secure Disambiguating Neural Linguistic Steganography [66.30965740387047]
The segmentation ambiguity problem, which arises when using language models based on subwords, leads to occasional decoding failures.
We propose a novel secure disambiguation method named SyncPool, which effectively addresses the segmentation ambiguity problem.
SyncPool does not change the size of the candidate pool or the distribution of tokens and thus is applicable to provably secure language steganography methods.
arXiv Detail & Related papers (2024-03-26T09:25:57Z) - Cryptanalysis and improvement of multimodal data encryption by
machine-learning-based system [0.0]
encryption algorithms to accommodate varied requirements of this field.
Best approach to analyzing an encryption algorithm is to identify a practical and efficient technique to break it.
arXiv Detail & Related papers (2024-02-24T10:02:21Z) - Lightweight Public Key Encryption in Post-Quantum Computing Era [0.0]
Confidentiality in our digital world is based on the security of cryptographic algorithms.
In the course of technological progress with quantum computers, the protective function of common encryption algorithms is threatened.
Our concept describes the transformation of a classical asymmetric encryption method to a modern complexity class.
arXiv Detail & Related papers (2023-11-24T21:06:42Z) - Decrypting Nonlinearity: Koopman Interpretation and Analysis of Cryptosystems [0.05120567378386613]
We introduce a novel perspective on cryptosystems by viewing the Diffie-Hellman key exchange and the Rivest-Shamir-Adleman cryptosystem as nonlinear dynamical systems.
By applying Koopman theory, we transform these dynamical systems into higher-dimensional spaces and analytically derive equivalent purely linear systems.
arXiv Detail & Related papers (2023-11-21T16:38:48Z) - Revocable Cryptography from Learning with Errors [61.470151825577034]
We build on the no-cloning principle of quantum mechanics and design cryptographic schemes with key-revocation capabilities.
We consider schemes where secret keys are represented as quantum states with the guarantee that, once the secret key is successfully revoked from a user, they no longer have the ability to perform the same functionality as before.
arXiv Detail & Related papers (2023-02-28T18:58:11Z) - A Variational Quantum Attack for AES-like Symmetric Cryptography [69.80357450216633]
We propose a variational quantum attack algorithm (VQAA) for classical AES-like symmetric cryptography.
In the VQAA, the known ciphertext is encoded as the ground state of a Hamiltonian that is constructed through a regular graph.
arXiv Detail & Related papers (2022-05-07T03:15:15Z) - Spatial-Temporal Sequential Hypergraph Network for Crime Prediction [56.41899180029119]
We propose Spatial-Temporal Sequential Hypergraph Network (ST-SHN) to collectively encode complex crime spatial-temporal patterns.
In particular, to handle spatial-temporal dynamics under the long-range and global context, we design a graph-structured message passing architecture.
We conduct extensive experiments on two real-world datasets, showing that our proposed ST-SHN framework can significantly improve the prediction performance.
arXiv Detail & Related papers (2022-01-07T12:46:50Z) - Software Vulnerability Detection via Deep Learning over Disaggregated
Code Graph Representation [57.92972327649165]
This work explores a deep learning approach to automatically learn the insecure patterns from code corpora.
Because code naturally admits graph structures with parsing, we develop a novel graph neural network (GNN) to exploit both the semantic context and structural regularity of a program.
arXiv Detail & Related papers (2021-09-07T21:24:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.