論文の概要: An Active Inference Agent for Simulating Human Translation Processes in a Hierarchical Architecture: Integrating the Task Segment Framework and the HOF taxonomy
- arxiv url: http://arxiv.org/abs/2405.03111v1
- Date: Mon, 6 May 2024 02:07:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-07 15:04:42.785437
- Title: An Active Inference Agent for Simulating Human Translation Processes in a Hierarchical Architecture: Integrating the Task Segment Framework and the HOF taxonomy
- Title(参考訳): 階層型アーキテクチャにおける人間の翻訳過程をシミュレーションするためのアクティブ推論エージェント:タスクセグメンテーションフレームワークとHOF分類体系の統合
- Authors: Michael Carl,
- Abstract要約: 本稿では,3つの組込み翻訳プロセスの階層構造として,人間の翻訳生成をモデル化する。
提案アーキテクチャは,キーストローク生成の時間的ダイナミクスを,知覚的,認知的,現象的層にわたって再現する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In this paper, we propose modelling human translation production as a hierarchy of three embedded translation processes. The proposed architecture replicates the temporal dynamics of keystroke production across sensorimotor, cognitive, and phenomenal layers. Utilizing data from the CRITT TPR-DB, the Task Segment Framework, and the HOF taxonomy, we demonstrate the temporal breakdown of the typing flow on distinct timelines within these three layers.
- Abstract(参考訳): 本稿では,3つの組込み翻訳プロセスの階層構造として,人間の翻訳生成をモデル化する。
提案アーキテクチャは,キーストローク生成の時間的ダイナミクスを,知覚的,認知的,現象的層にわたって再現する。
CRITT TPR-DB、タスクセグメンテーションフレームワーク、HOF分類のデータを利用して、これらの3つの階層の異なるタイムライン上でのタイピングフローの時間的破壊を実証する。
関連論文リスト
- Temporal and Semantic Evaluation Metrics for Foundation Models in Post-Hoc Analysis of Robotic Sub-tasks [1.8124328823188356]
本稿では,トラジェクトリデータを時間的境界と自然言語に基づく記述サブタスクに分解するフレームワークを提案する。
我々のフレームワークは、全軌道を構成する低レベルのサブタスクに対して、時間ベースの記述と言語ベースの記述の両方を提供する。
この尺度は2つのサブタスク分解の間の言語記述の時間的アライメントと意味的忠実度を測定する。
論文 参考訳(メタデータ) (2024-03-25T22:39:20Z) - Linguistic Structure Induction from Language Models [1.8130068086063336]
この論文は、教師なし環境で言語モデル(LM)から選挙区構造と依存関係構造を生成することに焦点を当てている。
本稿では,エンコーダネットワークにトランスフォーマーアーキテクチャを組み込んだStructFormer(SF)について詳細に検討し,その構成と依存性について述べる。
この分野の課題を分析し、対処するための6つの実験を提示します。
論文 参考訳(メタデータ) (2024-03-11T16:54:49Z) - Language-free Compositional Action Generation via Decoupling Refinement [67.50452446686725]
本稿では,言語補助に頼らずに作曲行動を生成する新しい枠組みを提案する。
このアプローチは,アクション結合,条件付きアクション生成,デカップリングリファインメントという3つの主要コンポーネントから構成される。
論文 参考訳(メタデータ) (2023-07-07T12:00:38Z) - Model Criticism for Long-Form Text Generation [113.13900836015122]
我々は,テキストの高レベル構造を評価するために,潜在空間におけるモデル批判という統計ツールを適用した。
我々は,コヒーレンス,コア,トピックスという,ハイレベルな談話の3つの代表的な側面について実験を行った。
トランスフォーマーベースの言語モデルでは、トピック構造をキャプチャできるが、構造コヒーレンスやモデリングコアスを維持するのが難しくなる。
論文 参考訳(メタデータ) (2022-10-16T04:35:58Z) - Modeling Temporal-Modal Entity Graph for Procedural Multimodal Machine
Comprehension [23.281727955934304]
手続き型マルチモーダル文書(PMD)は、テキスト命令とそれに対応する画像を段階的に整理する。
本研究では,M3C(Procedural MultiModal Machine)を細粒度レベルで(文書や文レベルでの既存調査と比較)アプローチする。
論文 参考訳(メタデータ) (2022-04-06T03:41:13Z) - Recurrent Neural Networks with Mixed Hierarchical Structures and EM
Algorithm for Natural Language Processing [9.645196221785694]
我々は潜在指標層と呼ばれる手法を開発し、暗黙的な階層的情報を特定し学習する。
また、トレーニングにおいて潜在指標層を扱うEMアルゴリズムを開発した。
ブートストラップトレーニングによるEM-HRNNモデルは,文書分類タスクにおいて,他のRNNモデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-01-21T23:08:33Z) - HS3: Learning with Proper Task Complexity in Hierarchically Supervised
Semantic Segmentation [81.87943324048756]
本稿では,タスクの複雑さによって意味のある表現を学習するためのセグメンテーションネットワークの中間層を監督するトレーニングスキームである階層的意味論(Hierarchically Supervised Semantic,HS3)を提案する。
提案するHS3-Fuseフレームワークはセグメンテーション予測をさらに改善し、2つの大きなセグメンテーションベンチマークであるNYUD-v2とCityscapesで最先端の結果を得る。
論文 参考訳(メタデータ) (2021-11-03T16:33:29Z) - Spatio-Temporal Representation Factorization for Video-based Person
Re-Identification [55.01276167336187]
本稿では、re-IDのための時空間表現分解モジュール(STRF)を提案する。
STRFはフレキシブルな新しい計算ユニットであり、re-IDのための既存のほとんどの3D畳み込みニューラルネットワークアーキテクチャと併用することができる。
実験により、STRFは様々なベースラインアーキテクチャの性能を向上し、新しい最先端の成果を示す。
論文 参考訳(メタデータ) (2021-07-25T19:29:37Z) - Recurrent Neural Networks with Mixed Hierarchical Structures for Natural
Language Processing [13.960152426268767]
階層構造は言語処理と自然言語処理の両方に存在している。
自然言語の階層的表現を学習するためにRNNを設計する方法は、長年にわたる課題である。
本稿では,静的境界と動的境界という2種類の境界を定義し,文書分類タスクのための多層階層構造を構築する。
論文 参考訳(メタデータ) (2021-06-04T15:50:42Z) - Conversational Question Reformulation via Sequence-to-Sequence
Architectures and Pretrained Language Models [56.268862325167575]
本稿では、列列列構造と事前学習言語モデル(PLM)を用いた会話型質問修正(CQR)の実証的研究について述べる。
我々はPLMを利用して、CQRタスクの目的である最大推定におけるトークン・トークン・トークン・トークンの独立性の強い仮定に対処する。
我々は、最近導入されたCANARDデータセットの微調整PLMをドメイン内タスクとして評価し、TREC 2019 CAsT Trackのデータからドメイン外タスクとしてモデルを検証する。
論文 参考訳(メタデータ) (2020-04-04T11:07:54Z) - Tree-structured Attention with Hierarchical Accumulation [103.47584968330325]
階層的累積」は解析木構造を一定時間複雑度で自己注意に符号化する。
提案手法は,4つの IWSLT 翻訳タスクと WMT'14 翻訳タスクにおいて,SOTA 法より優れている。
論文 参考訳(メタデータ) (2020-02-19T08:17:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。