論文の概要: AniTalker: Animate Vivid and Diverse Talking Faces through Identity-Decoupled Facial Motion Encoding
- arxiv url: http://arxiv.org/abs/2405.03121v1
- Date: Mon, 6 May 2024 02:32:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-07 14:54:58.457570
- Title: AniTalker: Animate Vivid and Diverse Talking Faces through Identity-Decoupled Facial Motion Encoding
- Title(参考訳): AniTalker: アイデンティティを分離した顔のモーションエンコーディングによる顔の鮮明化と多角化
- Authors: Tao Liu, Feilong Chen, Shuai Fan, Chenpeng Du, Qi Chen, Xie Chen, Kai Yu,
- Abstract要約: AniTalkerは、1つのポートレートから、生き生きとした話し顔を生成するために設計されたフレームワークである。
AniTalkerは、微妙な表情や頭の動きを含む、幅広い顔のダイナミクスを効果的にキャプチャする。
- 参考スコア(独自算出の注目度): 24.486705010561067
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The paper introduces AniTalker, an innovative framework designed to generate lifelike talking faces from a single portrait. Unlike existing models that primarily focus on verbal cues such as lip synchronization and fail to capture the complex dynamics of facial expressions and nonverbal cues, AniTalker employs a universal motion representation. This innovative representation effectively captures a wide range of facial dynamics, including subtle expressions and head movements. AniTalker enhances motion depiction through two self-supervised learning strategies: the first involves reconstructing target video frames from source frames within the same identity to learn subtle motion representations, and the second develops an identity encoder using metric learning while actively minimizing mutual information between the identity and motion encoders. This approach ensures that the motion representation is dynamic and devoid of identity-specific details, significantly reducing the need for labeled data. Additionally, the integration of a diffusion model with a variance adapter allows for the generation of diverse and controllable facial animations. This method not only demonstrates AniTalker's capability to create detailed and realistic facial movements but also underscores its potential in crafting dynamic avatars for real-world applications. Synthetic results can be viewed at https://github.com/X-LANCE/AniTalker.
- Abstract(参考訳): AniTalkerは、一枚の肖像画から人生のような会話顔を生成するために設計された革新的なフレームワークである。
唇の同期や表情や非言語的手がかりの複雑なダイナミクスを捉えるのに失敗する既存のモデルとは異なり、AniTalkerは普遍的な動き表現を使用している。
この革新的な表現は、微妙な表情や頭の動きを含む幅広い顔の動きを効果的に捉えている。
AniTalkerは、2つの自己指導型学習戦略を通じて、動きの描写を強化する。第1は、同一ID内のソースフレームからターゲットの映像フレームを再構築して微妙な動きの表現を学習することであり、第2は、アイデンティティと動きのエンコーダ間の相互情報を積極的に最小化しつつ、メトリック学習を用いたアイデンティティエンコーダを開発する。
このアプローチは、動作表現が動的であり、アイデンティティ固有の詳細を欠いていることを保証し、ラベル付きデータの必要性を著しく低減する。
さらに、拡散モデルと分散アダプタの統合により、多種多様な制御可能な顔アニメーションを生成することができる。
この手法は、AniTalkerが細部でリアルな顔の動きを作り出す能力を示すだけでなく、現実のアプリケーションに動的アバターを製作する可能性も示している。
合成結果はhttps://github.com/X-LANCE/AniTalkerで見ることができる。
関連論文リスト
- MimicTalk: Mimicking a personalized and expressive 3D talking face in minutes [74.82911268630463]
トーキングフェース生成(TFG)は、ターゲットアイデンティティーの顔をアニメーション化し、リアルなトーキングビデオを作成することを目的としている。
MimicTalkは、個人別TFGの効率性と堅牢性を改善するために、NeRFベースの個人非依存のジェネリックモデルから豊富な知識を活用する。
私たちのMimicTalkは、ビデオの品質、効率、表現性に関して、これまでのベースラインを超えていることが実験によって示されています。
論文 参考訳(メタデータ) (2024-10-09T10:12:37Z) - GaussianHeads: End-to-End Learning of Drivable Gaussian Head Avatars from Coarse-to-fine Representations [54.94362657501809]
マルチビュー画像から高ダイナミックで変形可能な人間の頭部アバターをリアルタイムで生成する手法を提案する。
本手法のコアとなるのは,顔表情と頭部運動の複雑なダイナミクスを捉えることができる頭部モデルの階層的表現である。
我々は、この粗い顔アバターモデルを、エンドツーエンドのフレームワークで学習可能なパラメータとして頭部ポーズとともに訓練する。
論文 参考訳(メタデータ) (2024-09-18T13:05:43Z) - Emotional Conversation: Empowering Talking Faces with Cohesive Expression, Gaze and Pose Generation [12.044308738509402]
3次元顔のランドマークを中間変数として用いた2段階の音声駆動音声顔生成フレームワークを提案する。
このフレームワークは、自己指導型学習を通じて、表現、視線、感情との協調的なアライメントを実現する。
我々のモデルは、視覚的品質と感情的アライメントの両方において、最先端のパフォーマンスを著しく向上させる。
論文 参考訳(メタデータ) (2024-06-12T06:00:00Z) - FaceChain-ImagineID: Freely Crafting High-Fidelity Diverse Talking Faces from Disentangled Audio [45.71036380866305]
我々は、音声を聴く人々の過程を抽象化し、意味のある手がかりを抽出し、単一の音声から動的に音声に一貫性のある発話顔を生成する。
ひとつはアイデンティティ、コンテンツ、感情をエンタングルドオーディオから効果的に切り離すことであり、もう一つは動画内多様性とビデオ間の一貫性を維持することである。
本稿では,3つのトレーニング可能なアダプタと凍結遅延拡散モデルとのフレキシブルな統合を含む,制御可能なコヒーレントフレーム生成を提案する。
論文 参考訳(メタデータ) (2024-03-04T09:59:48Z) - From Audio to Photoreal Embodiment: Synthesizing Humans in Conversations [107.88375243135579]
音声を聴くと、顔、体、手を含む個人に対して、ジェスチャー動作の可能性を複数出力する。
ジェスチャーにおいて重要なニュアンスを表現できる高光写実性アバターを用いて生成した動きを可視化する。
実験により,本モデルが適切な多様なジェスチャーを生成することを示し,拡散法とVQ法の両方に優れることがわかった。
論文 参考訳(メタデータ) (2024-01-03T18:55:16Z) - Mimic: Speaking Style Disentanglement for Speech-Driven 3D Facial
Animation [41.489700112318864]
音声駆動型3D顔アニメーションは、音声と正確に同期し、独特の話し方にマッチする鮮やかな顔アニメーションを合成することを目的としている。
本稿では,任意の発話スタイルの符号化を可能にする,革新的な発話スタイルのアンタングル化手法を提案する。
また,顔の動きから話し方や内容の絡み合った表現を学習する「textbfMimic」という新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-18T01:49:42Z) - Personalized Speech-driven Expressive 3D Facial Animation Synthesis with
Style Control [1.8540152959438578]
現実的な顔アニメーションシステムは、自然性や妥当性の高次化を実現するために、アイデンティティ固有の話し方や顔の慣用性を考慮すべきである。
音声駆動型表情表現3次元顔画像合成フレームワークを提案する(スタイルと呼ばれる)。
我々のフレームワークはエンドツーエンドで訓練されており、3つの主要コンポーネントを持つ非自己回帰エンコーダデコーダアーキテクチャを備えている。
論文 参考訳(メタデータ) (2023-10-25T21:22:28Z) - Audio-Driven Talking Face Generation with Diverse yet Realistic Facial
Animations [61.65012981435094]
DIRFAは、異なるが現実的な顔のアニメーションを同一の駆動音声から生成できる新しい方法である。
同一音声に対して妥当な顔のアニメーションの変動に対応するため,トランスフォーマーに基づく確率的マッピングネットワークを設計する。
DIRFAは現実的な顔のアニメーションを効果的に生成できることを示す。
論文 参考訳(メタデータ) (2023-04-18T12:36:15Z) - That's What I Said: Fully-Controllable Talking Face Generation [16.570649208028343]
各顔が同じ動きパターンを持つが、異なる同一性を持つ正準空間を提案する。
2つ目は、アイデンティティ情報を排除しながら、動きに関連する特徴のみを表現するマルチモーダルモーション空間をナビゲートすることである。
提案手法では, 顔の属性を完全に制御し, 正確な唇のシンクロ化を行うことができる。
論文 参考訳(メタデータ) (2023-04-06T17:56:50Z) - Imitator: Personalized Speech-driven 3D Facial Animation [63.57811510502906]
State-of-the-artメソッドは、ターゲットアクターの顔トポロジを変形させ、ターゲットアクターのアイデンティティ固有の話し方や顔の慣用性を考慮せずに入力オーディオを同期させる。
本稿では,音声による表情合成手法であるImitatorについて述べる。
提案手法は,ターゲットアクターの発話スタイルを保ちながら,入力音声から時間的コヒーレントな表情を生成する。
論文 参考訳(メタデータ) (2022-12-30T19:00:02Z) - Language-Guided Face Animation by Recurrent StyleGAN-based Generator [87.56260982475564]
本研究では,静的顔画像のアニメーション化を目的とした,言語指導型顔画像の新しいタスクについて検討する。
本稿では,言語から一連の意味情報と動作情報を抽出し,学習済みのStyleGANに視覚情報と共に供給し,高品質なフレームを生成するための繰り返し動作生成手法を提案する。
論文 参考訳(メタデータ) (2022-08-11T02:57:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。