論文の概要: Exploring the Frontiers of Softmax: Provable Optimization, Applications in Diffusion Model, and Beyond
- arxiv url: http://arxiv.org/abs/2405.03251v1
- Date: Mon, 6 May 2024 08:15:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-07 14:25:38.991642
- Title: Exploring the Frontiers of Softmax: Provable Optimization, Applications in Diffusion Model, and Beyond
- Title(参考訳): Softmaxのフロンティアを探る: 予測可能な最適化、拡散モデルへの応用
- Authors: Jiuxiang Gu, Chenyang Li, Yingyu Liang, Zhenmei Shi, Zhao Song,
- Abstract要約: 本稿では、2層ソフトマックスニューラルネットワークの最適化と一般化特性について理論的研究を行う。
オーバーパラメトリゼーション方式では,ソフトマックスニューラルネットワークが対象関数を学習できることが示されている。
私たちの仕事は、自然言語処理などにおけるさらなる進歩の道を開くものです。
- 参考スコア(独自算出の注目度): 32.734716767055836
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The softmax activation function plays a crucial role in the success of large language models (LLMs), particularly in the self-attention mechanism of the widely adopted Transformer architecture. However, the underlying learning dynamics that contribute to the effectiveness of softmax remain largely unexplored. As a step towards better understanding, this paper provides a theoretical study of the optimization and generalization properties of two-layer softmax neural networks, providing theoretical insights into their superior performance as other activation functions, such as ReLU and exponential. Leveraging the Neural Tangent Kernel (NTK) framework, our analysis reveals that the normalization effect of the softmax function leads to a good perturbation property of the induced NTK matrix, resulting in a good convex region of the loss landscape. Consequently, softmax neural networks can learn the target function in the over-parametrization regime. To demonstrate the broad applicability of our theoretical findings, we apply them to the task of learning score estimation functions in diffusion models, a promising approach for generative modeling. Our analysis shows that gradient-based algorithms can learn the score function with a provable accuracy. Our work provides a deeper understanding of the effectiveness of softmax neural networks and their potential in various domains, paving the way for further advancements in natural language processing and beyond.
- Abstract(参考訳): ソフトマックスアクティベーション関数は,大規模言語モデル(LLM)の成功,特に広く採用されているTransformerアーキテクチャの自己保持機構において重要な役割を果たす。
しかし、ソフトマックスの有効性に寄与する基礎となる学習力学はほとんど未解明のままである。
本稿では,2層型ソフトマックスニューラルネットワークの最適化と一般化特性に関する理論的研究を行い,ReLUや指数関数といった他のアクティベーション関数よりも優れた性能に関する理論的知見を提供する。
ニューラルタンジェントカーネル (NTK) を用いた解析により, ソフトマックス関数の正規化効果が誘導されたNTK行列の摂動特性に寄与し, ロスランドスケープの凸部が良好であることがわかった。
これにより、ソフトマックスニューラルネットワークはオーバーパラメトリゼーション方式でターゲット関数を学習することができる。
提案手法を拡散モデルにおけるスコア推定関数の学習タスクに適用し,その有効性を示す。
解析により、勾配に基づくアルゴリズムは、証明可能な精度でスコア関数を学習できることを示す。
我々の研究は、ソフトマックスニューラルネットワークの有効性と様々な領域におけるその可能性についてより深く理解し、自然言語処理などにおけるさらなる進歩の道を開いた。
関連論文リスト
- Learning and Verifying Maximal Taylor-Neural Lyapunov functions [0.4910937238451484]
我々はTaylor-neural Lyapunov関数と呼ばれる新しいニューラルネットワークアーキテクチャを導入する。
このアーキテクチャは局所近似を符号化し、ニューラルネットワークを利用して残差を近似することで世界規模で拡張する。
この研究は制御理論の大幅な進歩を表しており、安定な制御系などの設計に幅広い応用が期待できる。
論文 参考訳(メタデータ) (2024-08-30T12:40:12Z) - A Method on Searching Better Activation Functions [15.180864683908878]
深層ニューラルネットワークにおける静的活性化関数を設計するためのエントロピーに基づくアクティベーション関数最適化(EAFO)手法を提案する。
我々は、CRRELU(Correction Regularized ReLU)として知られるReLUから新しいアクティベーション関数を導出する。
論文 参考訳(メタデータ) (2024-05-19T03:48:05Z) - Unraveling Feature Extraction Mechanisms in Neural Networks [10.13842157577026]
本稿では, ニューラルネットワークカーネル(NTK)に基づく理論的手法を提案し, そのメカニズムを解明する。
これらのモデルが勾配降下時の統計的特徴をどのように活用し、最終決定にどのように統合されるかを明らかにする。
自己注意モデルとCNNモデルはn-gramの学習の限界を示すが、乗算モデルはこの領域で優れていると考えられる。
論文 参考訳(メタデータ) (2023-10-25T04:22:40Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
しきい値アクティベートを伴うディープニューラルネットワークの重み劣化正規化学習問題について検討した。
ネットワークの特定の層でデータセットを破砕できる場合に、簡易な凸最適化の定式化を導出する。
論文 参考訳(メタデータ) (2023-03-06T18:59:13Z) - A Local Geometric Interpretation of Feature Extraction in Deep
Feedforward Neural Networks [13.159994710917022]
本稿では, 深部フィードフォワードニューラルネットワークが高次元データから低次元特徴をいかに抽出するかを理解するための局所幾何学的解析法を提案する。
本研究は, 局所幾何学領域において, ニューラルネットワークの一層における最適重みと前層の最適特徴が, この層のベイズ作用によって決定される行列の低ランク近似を構成することを示す。
論文 参考訳(メタデータ) (2022-02-09T18:50:00Z) - Going Beyond Linear RL: Sample Efficient Neural Function Approximation [76.57464214864756]
2層ニューラルネットワークによる関数近似について検討する。
この結果は線形(あるいは可溶性次元)法で達成できることを大幅に改善する。
論文 参考訳(メタデータ) (2021-07-14T03:03:56Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
マルチエージェントシステムにおける学習に有効なモデルベース強化学習アルゴリズムを提案する。
我々の理論的な貢献は、MFCのモデルベース強化学習における最初の一般的な後悔の限界である。
コア最適化問題の実用的なパラメトリゼーションを提供する。
論文 参考訳(メタデータ) (2021-07-08T18:01:02Z) - Sparse Flows: Pruning Continuous-depth Models [107.98191032466544]
生成モデルにおいて,プルーニングによりニューラルネットワークの一般化が向上することを示す。
また、プルーニングは、元のネットワークに比べて最大98%少ないパラメータで、精度を損なうことなく、最小かつ効率的なニューラルODE表現を見出すことを示した。
論文 参考訳(メタデータ) (2021-06-24T01:40:17Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
ディープニューラルネットワークと互換性のあるアクティブな学習アルゴリズムの必要性が高まっている。
本稿では,ニューラルネットワークのための抽出可能かつ高性能な能動学習アルゴリズムBAITを紹介する。
論文 参考訳(メタデータ) (2021-06-17T17:26:31Z) - Influence Estimation and Maximization via Neural Mean-Field Dynamics [60.91291234832546]
本稿では,ニューラル平均場(NMF)ダイナミクスを用いた新しい学習フレームワークを提案する。
我々のフレームワークは拡散ネットワークの構造とノード感染確率の進化を同時に学習することができる。
論文 参考訳(メタデータ) (2021-06-03T00:02:05Z) - On Approximation Capabilities of ReLU Activation and Softmax Output
Layer in Neural Networks [6.852561400929072]
我々は、ReLUアクティベーション関数を用いた十分に大きなニューラルネットワークが任意の精度でL1$の任意の関数を近似できることを証明した。
また、非線形ソフトマックス出力層を用いた十分大きなニューラルネットワークは、任意の指標関数を$L1$で近似することも示している。
論文 参考訳(メタデータ) (2020-02-10T19:48:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。