論文の概要: Learning and Verifying Maximal Taylor-Neural Lyapunov functions
- arxiv url: http://arxiv.org/abs/2408.17246v1
- Date: Fri, 30 Aug 2024 12:40:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-02 15:28:41.223257
- Title: Learning and Verifying Maximal Taylor-Neural Lyapunov functions
- Title(参考訳): 最大テイラー・ニューラルリアプノフ関数の学習と検証
- Authors: Matthieu Barreau, Nicola Bastianello,
- Abstract要約: 我々はTaylor-neural Lyapunov関数と呼ばれる新しいニューラルネットワークアーキテクチャを導入する。
このアーキテクチャは局所近似を符号化し、ニューラルネットワークを利用して残差を近似することで世界規模で拡張する。
この研究は制御理論の大幅な進歩を表しており、安定な制御系などの設計に幅広い応用が期待できる。
- 参考スコア(独自算出の注目度): 0.4910937238451484
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a novel neural network architecture, termed Taylor-neural Lyapunov functions, designed to approximate Lyapunov functions with formal certification. This architecture innovatively encodes local approximations and extends them globally by leveraging neural networks to approximate the residuals. Our method recasts the problem of estimating the largest region of attraction - specifically for maximal Lyapunov functions - into a learning problem, ensuring convergence around the origin through robust control theory. Physics-informed machine learning techniques further refine the estimation of the largest region of attraction. Remarkably, this method is versatile, operating effectively even without simulated data points. We validate the efficacy of our approach by providing numerical certificates of convergence across multiple examples. Our proposed methodology not only competes closely with state-of-the-art approaches, such as sum-of-squares and LyZNet, but also achieves comparable results even in the absence of simulated data. This work represents a significant advancement in control theory, with broad potential applications in the design of stable control systems and beyond.
- Abstract(参考訳): 本稿では,テイラー・ニューラル・リャプノフ関数(Taylor-neural Lyapunov function)と呼ばれる新しいニューラルネットワークアーキテクチャを導入する。
このアーキテクチャは革新的に局所近似を符号化し、ニューラルネットワークを利用して残差を近似することで世界規模で拡張する。
提案手法は,アトラクションの最大領域(特に最大リアプノフ関数)を学習問題に推定する問題を再キャストし,ロバスト制御理論による原点の収束性を確保する。
物理インフォームド機械学習技術は、アトラクションの最大領域の推定をさらに洗練する。
注目すべきは、この方法は汎用的であり、シミュレーションされたデータポイントを使わずに効果的に動作することである。
複数の例にまたがって収束の数値証明を提供することにより,本手法の有効性を検証した。
提案手法は,最新手法であるsum-of-squaresやLyZNetと密接に競合するだけでなく,シミュレーションデータがない場合でも同等の結果が得られる。
この研究は制御理論の大幅な進歩を表しており、安定な制御系などの設計に幅広い応用が期待できる。
関連論文リスト
- Chebyshev Polynomial-Based Kolmogorov-Arnold Networks: An Efficient Architecture for Nonlinear Function Approximation [0.0]
本稿では,Chebyshev Kolmogorov-Arnoldの定理に触発された新しいニューラルネットワークアーキテクチャであるChebyshev Kolmogorov-Arnold Networkについて述べる。
ネットワークのエッジ上でChebyshevによってパラメータ化された学習可能な関数を利用することで、Chebyshev Kansは関数近似タスクの柔軟性、効率、解釈性を向上させる。
論文 参考訳(メタデータ) (2024-05-12T07:55:43Z) - Exploring the Frontiers of Softmax: Provable Optimization, Applications in Diffusion Model, and Beyond [32.734716767055836]
本稿では、2層ソフトマックスニューラルネットワークの最適化と一般化特性について理論的研究を行う。
オーバーパラメトリゼーション方式では,ソフトマックスニューラルネットワークが対象関数を学習できることが示されている。
私たちの仕事は、自然言語処理などにおけるさらなる進歩の道を開くものです。
論文 参考訳(メタデータ) (2024-05-06T08:15:29Z) - The Convex Landscape of Neural Networks: Characterizing Global Optima
and Stationary Points via Lasso Models [75.33431791218302]
ディープニューラルネットワーク(DNN)モデルは、プログラミング目的に使用される。
本稿では,凸型神経回復モデルについて検討する。
定常的非次元目的物はすべて,グローバルサブサンプリング型凸解法プログラムとして特徴付けられることを示す。
また, 静止非次元目的物はすべて, グローバルサブサンプリング型凸解法プログラムとして特徴付けられることを示す。
論文 参考訳(メタデータ) (2023-12-19T23:04:56Z) - Learning ground states of gapped quantum Hamiltonians with Kernel
Methods [0.0]
本稿では,カーネル手法を用いて最適化を容易にする統計的学習手法を提案する。
提案手法は,電力の次のステップを学習するために教師付き学習を用いる電力法を近似的に実現したものである。
論文 参考訳(メタデータ) (2023-03-15T19:37:33Z) - Offline Reinforcement Learning with Differentiable Function
Approximation is Provably Efficient [65.08966446962845]
歴史的データを用いて意思決定戦略を最適化することを目的としたオフライン強化学習は、現実の応用に広く適用されている。
微分関数クラス近似(DFA)を用いたオフライン強化学習の検討から一歩踏み出した。
最も重要なことは、悲観的な適合Q-ラーニングアルゴリズムを解析することにより、オフライン微分関数近似が有効であることを示すことである。
論文 参考訳(メタデータ) (2022-10-03T07:59:42Z) - Stabilizing Q-learning with Linear Architectures for Provably Efficient
Learning [53.17258888552998]
本研究では,線形関数近似を用いた基本的な$Q$-learningプロトコルの探索変種を提案する。
このアルゴリズムの性能は,新しい近似誤差というより寛容な概念の下で,非常に優雅に低下することを示す。
論文 参考訳(メタデータ) (2022-06-01T23:26:51Z) - Inducing Gaussian Process Networks [80.40892394020797]
本稿では,特徴空間と誘導点を同時に学習するシンプルなフレームワークであるGaussian Process Network (IGN)を提案する。
特に誘導点は特徴空間で直接学習され、複雑な構造化領域のシームレスな表現を可能にする。
実世界のデータセットに対する実験結果から,IGNは最先端の手法よりも大幅に進歩していることを示す。
論文 参考訳(メタデータ) (2022-04-21T05:27:09Z) - A Free Lunch with Influence Functions? Improving Neural Network
Estimates with Concepts from Semiparametric Statistics [41.99023989695363]
ニューラルネットワークや機械学習アルゴリズムの改善に使用される半パラメトリック理論の可能性を探る。
本稿では,単一アーキテクチャを用いてアンサンブルの柔軟性と多様性を求めるニューラルネットワーク手法であるMultiNetを提案する。
論文 参考訳(メタデータ) (2022-02-18T09:35:51Z) - Lyapunov-Net: A Deep Neural Network Architecture for Lyapunov Function
Approximation [7.469944784454579]
我々は,リャプノフ関数を高次元で近似するために,リャプノフネットと呼ばれる汎用的なディープニューラルネットワークアーキテクチャを開発した。
Lyapunov-Netは正の定性を保証するため、負の軌道微分条件を満たすように容易に訓練することができる。
論文 参考訳(メタデータ) (2021-09-27T21:42:19Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
ディープニューラルネットワークと互換性のあるアクティブな学習アルゴリズムの必要性が高まっている。
本稿では,ニューラルネットワークのための抽出可能かつ高性能な能動学習アルゴリズムBAITを紹介する。
論文 参考訳(メタデータ) (2021-06-17T17:26:31Z) - Credit Assignment in Neural Networks through Deep Feedback Control [59.14935871979047]
ディープフィードバックコントロール(Deep Feedback Control, DFC)は、フィードバックコントローラを使用して、望ましい出力ターゲットにマッチするディープニューラルネットワークを駆動し、クレジット割り当てに制御信号を使用する新しい学習方法である。
学習規則は空間と時間において完全に局所的であり、幅広い接続パターンに対するガウス・ニュートンの最適化を近似する。
さらに,DFCと皮質錐体ニューロンのマルチコンパートメントモデルと,局所的な電圧依存性のシナプス可塑性規則を関連づける。
論文 参考訳(メタデータ) (2021-06-15T05:30:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。