論文の概要: Animate Your Thoughts: Decoupled Reconstruction of Dynamic Natural Vision from Slow Brain Activity
- arxiv url: http://arxiv.org/abs/2405.03280v1
- Date: Mon, 6 May 2024 08:56:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-07 14:25:38.970728
- Title: Animate Your Thoughts: Decoupled Reconstruction of Dynamic Natural Vision from Slow Brain Activity
- Title(参考訳): スロー脳活動による動的自然視の非結合的再構築
- Authors: Yizhuo Lu, Changde Du, Chong Wang, Xuanliu Zhu, Liuyun Jiang, Huiguang He,
- Abstract要約: 脳活動から人間のダイナミックビジョンを再構築することは、科学的に重要な課題である。
本稿では,3つの公開データセット上での最先端性能を実現する2段階モデルであるMind-Animatorを提案する。
我々は、再構成された映像力学は、生成モデルの幻覚ではなく、fMRIから導出されるものであることを裏付ける。
- 参考スコア(独自算出の注目度): 13.291585611137355
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Reconstructing human dynamic vision from brain activity is a challenging task with great scientific significance. The difficulty stems from two primary issues: (1) vision-processing mechanisms in the brain are highly intricate and not fully revealed, making it challenging to directly learn a mapping between fMRI and video; (2) the temporal resolution of fMRI is significantly lower than that of natural videos. To overcome these issues, this paper propose a two-stage model named Mind-Animator, which achieves state-of-the-art performance on three public datasets. Specifically, during the fMRI-to-feature stage, we decouple semantic, structural, and motion features from fMRI through fMRI-vision-language tri-modal contrastive learning and sparse causal attention. In the feature-to-video stage, these features are merged to videos by an inflated Stable Diffusion. We substantiate that the reconstructed video dynamics are indeed derived from fMRI, rather than hallucinations of the generative model, through permutation tests. Additionally, the visualization of voxel-wise and ROI-wise importance maps confirms the neurobiological interpretability of our model.
- Abstract(参考訳): 脳活動から人間のダイナミックビジョンを再構築することは、科学的に重要な課題である。
1) 脳の視覚処理機構は高度に複雑であり、完全には明らかになっていないため、fMRIとビデオのマッピングを直接学習することは困難である; 2)fMRIの時間分解能は自然ビデオよりも著しく低い。
本稿では,3つの公開データセット上での最先端性能を実現する2段階モデルであるMind-Animatorを提案する。
具体的には、fMRIからfMRIまでの段階において、意味、構造、運動の特徴をfMRIから、fMRIの3モーダル・コントラスト学習と疎因性注意(sparse causal attention)を通じて分離する。
機能とビデオの段階では、これらの機能はインフレータブル拡散(Stable Diffusion)によってビデオにマージされる。
我々は、再構成されたビデオ力学は、置換試験によって生成モデルの幻覚ではなく、fMRIから導出されるものであることを裏付ける。
さらに, Voxel-wise と ROI-wise important map の可視化により, 本モデルの神経生物学的解釈可能性を確認した。
関連論文リスト
- NeuroClips: Towards High-fidelity and Smooth fMRI-to-Video Reconstruction [29.030311713701295]
我々は,fMRIから高忠実度・スムーズな映像をデコードする革新的なフレームワークであるNeuroClipsを提案する。
NeuroClipsは、ビデオの再構成にセマンティックサクタを使用し、セマンティックの精度と一貫性を誘導し、低レベルの知覚の詳細を捉えるために知覚再構成器を使用する。
NeuroClipsは8FPSで最大6秒のスムーズな高忠実度ビデオ再構成を実現する。
論文 参考訳(メタデータ) (2024-10-25T10:28:26Z) - Reanimating Images using Neural Representations of Dynamic Stimuli [36.04425924379253]
動画拡散モデルは、静止画像表現とモーション生成を分離するために使用される。
ブレインデコードされたモーション信号は、ビデオの初期フレームのみに基づいて、リアルなビデオ再アニメーションを可能にする。
この枠組みは、動的視覚シーンにおける脳が空間的・時間的情報をどのように表現するかの理解を深める。
論文 参考訳(メタデータ) (2024-06-04T17:59:49Z) - MindFormer: Semantic Alignment of Multi-Subject fMRI for Brain Decoding [50.55024115943266]
本稿では,MindFormer を用いたマルチオブジェクト fMRI 信号のセマンティックアライメント手法を提案する。
このモデルは、fMRIから画像生成のための安定拡散モデルや、fMRIからテキスト生成のための大規模言語モデル(LLM)の条件付けに使用できるfMRI条件付き特徴ベクトルを生成するように設計されている。
実験の結果,MindFormerは意味的に一貫した画像とテキストを異なる主題にわたって生成することがわかった。
論文 参考訳(メタデータ) (2024-05-28T00:36:25Z) - Brain3D: Generating 3D Objects from fMRI [76.41771117405973]
被験者のfMRIデータを入力として利用する新しい3Dオブジェクト表現学習手法であるBrain3Dを設計する。
我々は,人間の視覚系の各領域の異なる機能的特徴を,我々のモデルが捉えていることを示す。
予備評価は、Brain3Dがシミュレーションシナリオで障害した脳領域を正常に識別できることを示唆している。
論文 参考訳(メタデータ) (2024-05-24T06:06:11Z) - MindBridge: A Cross-Subject Brain Decoding Framework [60.58552697067837]
脳の復号化は、獲得した脳信号から刺激を再構築することを目的としている。
現在、脳の復号化はモデルごとのオブジェクトごとのパラダイムに限られている。
我々は,1つのモデルのみを用いることで,オブジェクト間脳デコーディングを実現するMindBridgeを提案する。
論文 参考訳(メタデータ) (2024-04-11T15:46:42Z) - NeuroPictor: Refining fMRI-to-Image Reconstruction via Multi-individual Pretraining and Multi-level Modulation [55.51412454263856]
本稿では,fMRI信号を用いた拡散モデル生成過程を直接変調することを提案する。
様々な個人から約67,000 fMRI-imageペアのトレーニングを行うことで,fMRI-to-imageデコーディング能力に優れたモデルが得られた。
論文 参考訳(メタデータ) (2024-03-27T02:42:52Z) - NeuroCine: Decoding Vivid Video Sequences from Human Brain Activties [23.893490180665996]
本稿では,fMRIデータを復号化するための新たな二相フレームワークであるNeuroCineを紹介する。
公開されているfMRIデータセットでテストした結果,有望な結果が得られた。
このモデルが既存の脳構造や機能と一致し,その生物学的妥当性と解釈可能性を示すことが示唆された。
論文 参考訳(メタデータ) (2024-02-02T17:34:25Z) - MindDiffuser: Controlled Image Reconstruction from Human Brain Activity
with Semantic and Structural Diffusion [7.597218661195779]
我々はMindDiffuserと呼ばれる2段階の画像再構成モデルを提案する。
ステージ1では、VQ-VAE潜在表現とfMRIからデコードされたCLIPテキスト埋め込みが安定拡散される。
ステージ2では、fMRIからデコードされたCLIP視覚特徴を監視情報として利用し、バックパゲーションによりステージ1でデコードされた2つの特徴ベクトルを継続的に調整し、構造情報を整列させる。
論文 参考訳(メタデータ) (2023-08-08T13:28:34Z) - Joint fMRI Decoding and Encoding with Latent Embedding Alignment [77.66508125297754]
我々はfMRIデコーディングと符号化の両方に対処する統合フレームワークを導入する。
本モデルでは、fMRI信号から視覚刺激を同時に回復し、統合された枠組み内の画像から脳活動を予測する。
論文 参考訳(メタデータ) (2023-03-26T14:14:58Z) - Natural scene reconstruction from fMRI signals using generative latent
diffusion [1.90365714903665]
我々はBrain-Diffuserと呼ばれる2段階のシーン再構築フレームワークを提示する。
第1段階では、VDVAE(Very Deep Vari Autoencoder)モデルを用いて、低レベル特性と全体レイアウトをキャプチャする画像を再構成する。
第2段階では、予測されたマルチモーダル(テキストおよび視覚)特徴に基づいて、遅延拡散モデルのイメージ・ツー・イメージ・フレームワークを使用する。
論文 参考訳(メタデータ) (2023-03-09T15:24:26Z) - Exploring Motion and Appearance Information for Temporal Sentence
Grounding [52.01687915910648]
本研究では、時間的文のグラウンド化を解決するために、MARN(Motion-Appearance Reasoning Network)を提案する。
動作誘導と外見誘導のオブジェクト関係を学習するために,動作分岐と外見分岐を別々に開発する。
提案するMARNは,従来の最先端手法よりも大きなマージンで優れていた。
論文 参考訳(メタデータ) (2022-01-03T02:44:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。