論文の概要: Cinematic Mindscapes: High-quality Video Reconstruction from Brain
Activity
- arxiv url: http://arxiv.org/abs/2305.11675v1
- Date: Fri, 19 May 2023 13:44:25 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-22 14:19:20.456208
- Title: Cinematic Mindscapes: High-quality Video Reconstruction from Brain
Activity
- Title(参考訳): シネマティック・マインドスケープ:脳活動による高品質のビデオ再構成
- Authors: Zijiao Chen, Jiaxin Qing, Juan Helen Zhou
- Abstract要約: 我々は,Mind-Videoを用いて,任意のフレームレートで高品質な映像を再構成可能であることを示す。
また,我々のモデルは,確立された生理的過程を反映し,生物学的に妥当かつ解釈可能であることも示している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reconstructing human vision from brain activities has been an appealing task
that helps to understand our cognitive process. Even though recent research has
seen great success in reconstructing static images from non-invasive brain
recordings, work on recovering continuous visual experiences in the form of
videos is limited. In this work, we propose Mind-Video that learns
spatiotemporal information from continuous fMRI data of the cerebral cortex
progressively through masked brain modeling, multimodal contrastive learning
with spatiotemporal attention, and co-training with an augmented Stable
Diffusion model that incorporates network temporal inflation. We show that
high-quality videos of arbitrary frame rates can be reconstructed with
Mind-Video using adversarial guidance. The recovered videos were evaluated with
various semantic and pixel-level metrics. We achieved an average accuracy of
85% in semantic classification tasks and 0.19 in structural similarity index
(SSIM), outperforming the previous state-of-the-art by 45%. We also show that
our model is biologically plausible and interpretable, reflecting established
physiological processes.
- Abstract(参考訳): 脳の活動から人間の視覚を再構築することは、認知プロセスを理解するのに役立つ魅力的なタスクです。
近年の研究では、非侵襲的な脳記録から静止画像の復元に成功しているものの、連続的な視覚体験をビデオ形式で復元する作業は限られている。
本研究では,マスキング脳モデリング,時空間的注意を伴うマルチモーダルコントラスト学習,ネットワーク時間的インフレーションを組み込んだ拡張型安定拡散モデルとの共同学習を通じて,脳皮質の連続的fmriデータから時空間情報の漸進的学習を行うマインドビデオを提案する。
任意のフレームレートの高品質な映像を,敵意のガイダンスを用いてマインドビデオで再構成できることを示す。
検索したビデオは、さまざまなセマンティックおよびピクセルレベルのメトリクスで評価された。
意味的分類タスクの平均精度は85%,構造的類似度指標(ssim)は0.19であり,従来の45%を上回った。
また, 確立した生理的過程を反映して, 本モデルが生物学的に有理かつ解釈可能であることを示す。
関連論文リスト
- Knowledge-Guided Prompt Learning for Lifespan Brain MR Image Segmentation [53.70131202548981]
本稿では,脳MRIにKGPL(Knowledge-Guided Prompt Learning)を用いた2段階のセグメンテーションフレームワークを提案する。
具体的には,大規模データセットと準最適ラベルを用いたトレーニング前セグメンテーションモデルについて述べる。
知識的プロンプトの導入は、解剖学的多様性と生物学的プロセスの間の意味的関係を捉えている。
論文 参考訳(メタデータ) (2024-07-31T04:32:43Z) - Animate Your Thoughts: Decoupled Reconstruction of Dynamic Natural Vision from Slow Brain Activity [13.291585611137355]
脳活動から人間のダイナミックビジョンを再構築することは、科学的に重要な課題である。
本稿では,3つの公開データセット上での最先端性能を実現する2段階モデルであるMind-Animatorを提案する。
我々は、再構成された映像力学は、生成モデルの幻覚ではなく、fMRIから導出されるものであることを裏付ける。
論文 参考訳(メタデータ) (2024-05-06T08:56:41Z) - MindBridge: A Cross-Subject Brain Decoding Framework [60.58552697067837]
脳の復号化は、獲得した脳信号から刺激を再構築することを目的としている。
現在、脳の復号化はモデルごとのオブジェクトごとのパラダイムに限られている。
我々は,1つのモデルのみを用いることで,オブジェクト間脳デコーディングを実現するMindBridgeを提案する。
論文 参考訳(メタデータ) (2024-04-11T15:46:42Z) - Psychometry: An Omnifit Model for Image Reconstruction from Human Brain Activity [60.983327742457995]
人間の脳活動から見るイメージを再構築することで、人間とコンピュータのビジョンをBrain-Computer Interfaceを通して橋渡しする。
異なる被験者から得られた機能的磁気共鳴イメージング(fMRI)による画像再構成のための全能モデルであるサイコメトリを考案した。
論文 参考訳(メタデータ) (2024-03-29T07:16:34Z) - NeuroCine: Decoding Vivid Video Sequences from Human Brain Activties [23.893490180665996]
本稿では,fMRIデータを復号化するための新たな二相フレームワークであるNeuroCineを紹介する。
公開されているfMRIデータセットでテストした結果,有望な結果が得られた。
このモデルが既存の脳構造や機能と一致し,その生物学的妥当性と解釈可能性を示すことが示唆された。
論文 参考訳(メタデータ) (2024-02-02T17:34:25Z) - UniBrain: Unify Image Reconstruction and Captioning All in One Diffusion
Model from Human Brain Activity [2.666777614876322]
人間の脳活動からの1つの拡散モデルにおける画像再構成とキャプションを統一するUniBrainを提案する。
我々はfMRIボクセルをテキストに変換し、低レベル情報に潜入して現実的なキャプションや画像を生成する。
UniBrainは、画像再構成の点で現在の手法を質的にも量的にも優れており、Natural Scenesデータセットで初めて画像キャプションの結果を報告している。
論文 参考訳(メタデータ) (2023-08-14T19:49:29Z) - Improving visual image reconstruction from human brain activity using
latent diffusion models via multiple decoded inputs [2.4366811507669124]
深層学習と神経科学の統合は、脳活動の分析の改善につながった。
人間の脳活動による視覚体験の再構築は、特に恩恵を受けている分野である。
様々な復号化技術が視覚体験再構成の性能に与える影響について検討する。
論文 参考訳(メタデータ) (2023-06-20T13:48:02Z) - Brain Captioning: Decoding human brain activity into images and text [1.5486926490986461]
本稿では,脳活動を意味のある画像やキャプションにデコードする革新的な手法を提案する。
提案手法は,最先端画像キャプションモデルを活用し,ユニークな画像再構成パイプラインを組み込んだものである。
生成したキャプションと画像の両方の定量的指標を用いて,本手法の評価を行った。
論文 参考訳(メタデータ) (2023-05-19T09:57:19Z) - Controllable Mind Visual Diffusion Model [58.83896307930354]
脳信号の可視化は、人間の視覚システムとコンピュータビジョンモデルの間の重要なインターフェースとして機能する活発な研究領域として登場した。
我々は、制御可能なマインドビジュアルモデル拡散(CMVDM)と呼ばれる新しいアプローチを提案する。
CMVDMは属性アライメントとアシスタントネットワークを用いてfMRIデータから意味情報とシルエット情報を抽出する。
そして、制御モデルを利用して抽出した情報を画像合成に活用し、セマンティクスやシルエットの観点から視覚刺激によく似た画像を生成する。
論文 参考訳(メタデータ) (2023-05-17T11:36:40Z) - Joint fMRI Decoding and Encoding with Latent Embedding Alignment [77.66508125297754]
我々はfMRIデコーディングと符号化の両方に対処する統合フレームワークを導入する。
本モデルでは、fMRI信号から視覚刺激を同時に回復し、統合された枠組み内の画像から脳活動を予測する。
論文 参考訳(メタデータ) (2023-03-26T14:14:58Z) - Continuous Emotion Recognition with Spatiotemporal Convolutional Neural
Networks [82.54695985117783]
In-theld でキャプチャした長いビデオシーケンスを用いて,持続的な感情認識のための最先端のディープラーニングアーキテクチャの適合性を検討する。
我々は,2D-CNNと長期記憶ユニットを組み合わせた畳み込みリカレントニューラルネットワークと,2D-CNNモデルの微調整時の重みを膨らませて構築した膨らませた3D-CNNモデルを開発した。
論文 参考訳(メタデータ) (2020-11-18T13:42:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。