論文の概要: Doubly Robust Causal Effect Estimation under Networked Interference via Targeted Learning
- arxiv url: http://arxiv.org/abs/2405.03342v1
- Date: Mon, 6 May 2024 10:49:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-07 14:06:06.123837
- Title: Doubly Robust Causal Effect Estimation under Networked Interference via Targeted Learning
- Title(参考訳): 目標学習によるネットワーク干渉による二重ロバスト因果効果推定
- Authors: Weilin Chen, Ruichu Cai, Zeqin Yang, Jie Qiao, Yuguang Yan, Zijian Li, Zhifeng Hao,
- Abstract要約: ネットワーク干渉下での2つの頑健な因果効果推定器を提案する。
具体的には,対象とする学習手法をネットワーク干渉設定に一般化する。
我々は、同定された理論条件を目標損失に変換することによって、エンドツーエンドの因果効果推定器を考案する。
- 参考スコア(独自算出の注目度): 24.63284452991301
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Causal effect estimation under networked interference is an important but challenging problem. Available parametric methods are limited in their model space, while previous semiparametric methods, e.g., leveraging neural networks to fit only one single nuisance function, may still encounter misspecification problems under networked interference without appropriate assumptions on the data generation process. To mitigate bias stemming from misspecification, we propose a novel doubly robust causal effect estimator under networked interference, by adapting the targeted learning technique to the training of neural networks. Specifically, we generalize the targeted learning technique into the networked interference setting and establish the condition under which an estimator achieves double robustness. Based on the condition, we devise an end-to-end causal effect estimator by transforming the identified theoretical condition into a targeted loss. Moreover, we provide a theoretical analysis of our designed estimator, revealing a faster convergence rate compared to a single nuisance model. Extensive experimental results on two real-world networks with semisynthetic data demonstrate the effectiveness of our proposed estimators.
- Abstract(参考訳): ネットワーク干渉による因果効果の推定は重要であるが、難しい問題である。
利用可能なパラメトリック手法はモデル空間で制限されているが、従来の半パラメトリック手法、例えば1つのニュアンス関数に1つだけ適合するニューラルネットワークを利用すると、データ生成プロセスの適切な仮定なしに、ネットワーク干渉下での誤特定問題に遭遇する可能性がある。
本稿では,ニューラルネットワークのトレーニングにターゲット学習技術を適用することにより,ネットワーク干渉下での2重頑健な因果効果推定手法を提案する。
具体的には、対象とする学習技術をネットワーク干渉設定に一般化し、推定器が二重ロバスト性を達成する条件を確立する。
この条件に基づいて、同定された理論条件を目標損失に変換することにより、エンドツーエンドの因果効果推定器を考案する。
さらに,設計した推定器の理論的解析を行い,単一ニュアンスモデルと比較して収束速度が速いことを示した。
半合成データを用いた2つの実世界のネットワークにおける大規模な実験結果から,提案手法の有効性が示された。
関連論文リスト
- A Tunable Despeckling Neural Network Stabilized via Diffusion Equation [15.996302571895045]
ガンマノイズ除去は合成開口レーダ(SAR)イメージングの応用において重要な研究領域である。
本稿では,正規化ユニットと正規化ユニットを1つのネットワークにアンロールして,エンドツーエンドのトレーニングを行う,チューニング可能な正規化ニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2024-11-24T17:08:43Z) - Graph Machine Learning based Doubly Robust Estimator for Network Causal Effects [17.44202934049009]
本稿では,グラフ機械学習アプローチとダブル機械学習フレームワークを組み合わせた新しい手法を提案する。
提案手法は,広範囲なシミュレーション研究を通じて,正確で堅牢でスケーラブルであることを示す。
論文 参考訳(メタデータ) (2024-03-17T20:23:42Z) - Integrating Active Learning in Causal Inference with Interference: A
Novel Approach in Online Experiments [5.488412825534217]
ACI(Causal Inference with Interference)におけるアクティブラーニング手法について紹介する。
ACIはガウス過程を用いて、隣人の治療課題の連続的な測定の関数として直接的および余分な処理効果を柔軟にモデル化する。
データ要求の低減による精度の高い効果推定の実現可能性を示す。
論文 参考訳(メタデータ) (2024-02-20T04:13:59Z) - Residual Error: a New Performance Measure for Adversarial Robustness [85.0371352689919]
ディープラーニングの広く普及を制限する大きな課題は、敵の攻撃に対する脆弱さである。
本研究は,ディープニューラルネットワークの対角強靭性を評価するための新しい性能尺度である残留誤差の概念を提示する。
画像分類を用いた実験結果から,提案手法の有効性と有効性を示した。
論文 参考訳(メタデータ) (2021-06-18T16:34:23Z) - Interpretable Social Anchors for Human Trajectory Forecasting in Crowds [84.20437268671733]
本研究では,人混みの軌跡を予測できるニューラルネットワークシステムを提案する。
解釈可能なルールベースのインテントを学び、ニューラルネットワークの表現可能性を利用してシーン固有の残差をモデル化する。
私たちのアーキテクチャは、インタラクション中心のベンチマークTrajNet++でテストされています。
論文 参考訳(メタデータ) (2021-05-07T09:22:34Z) - Non-Singular Adversarial Robustness of Neural Networks [58.731070632586594]
小さな入力摂動に対する過敏性のため、アドリヤルロバスト性はニューラルネットワークにとって新たな課題となっている。
我々は,データ入力とモデル重みの共振レンズを用いて,ニューラルネットワークの非特異な対角性の概念を定式化する。
論文 参考訳(メタデータ) (2021-02-23T20:59:30Z) - Ramifications of Approximate Posterior Inference for Bayesian Deep
Learning in Adversarial and Out-of-Distribution Settings [7.476901945542385]
ベイジアン深層学習モデルが従来のニューラルネットワークよりわずかに優れていることを示す。
予備的な調査は、初期化、アーキテクチャ、アクティベーション関数の選択によるバイアスの潜在的固有の役割を示している。
論文 参考訳(メタデータ) (2020-09-03T16:58:15Z) - Vulnerability Under Adversarial Machine Learning: Bias or Variance? [77.30759061082085]
本研究では,機械学習が訓練された深層ニューラルネットワークのバイアスと分散に与える影響について検討する。
我々の分析は、ディープニューラルネットワークが対向的摂動下で性能が劣っている理由に光を当てている。
本稿では,計算処理の複雑さをよく知られた機械学習手法よりも低く抑えた,新しい逆機械学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-08-01T00:58:54Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
本稿では,ネットワーク上の拡散の推論と推定のための新しい学習フレームワークを提案する。
本研究の枠組みは, ノード感染確率の正確な進化を得るために, モリ・ズワンジッヒ形式から導かれる。
我々のアプローチは、基礎となる拡散ネットワークモデルのバリエーションに対して多用途で堅牢である。
論文 参考訳(メタデータ) (2020-06-16T18:45:20Z) - Bridging Mode Connectivity in Loss Landscapes and Adversarial Robustness [97.67477497115163]
我々は、モード接続を用いて、ディープニューラルネットワークの対角的堅牢性を研究する。
実験では、異なるネットワークアーキテクチャやデータセットに適用される様々な種類の敵攻撃について取り上げる。
以上の結果から,モード接続は,敵の強靭性を評価・改善するための総合的なツールであり,実用的な手段であることが示唆された。
論文 参考訳(メタデータ) (2020-04-30T19:12:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。