論文の概要: Statistical Edge Detection And UDF Learning For Shape Representation
- arxiv url: http://arxiv.org/abs/2405.03381v1
- Date: Mon, 6 May 2024 11:40:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-07 13:56:21.491852
- Title: Statistical Edge Detection And UDF Learning For Shape Representation
- Title(参考訳): 形状表現のための統計的エッジ検出とUDF学習
- Authors: Virgile Foy, Fabrice Gamboa, Reda Chhaibi,
- Abstract要約: 得られたニューラルUDFの元の3次元表面への忠実度を向上させるUDFの学習法を提案する。
表面縁周辺でのトレーニング点のサンプリングにより,トレーニング済みのニューラルUDFの局所的精度が向上することを示す。
本手法は局所的な幾何学的記述子よりも表面のエッジを高精度に検出する。
- 参考スコア(独自算出の注目度): 1.9799527196428242
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the field of computer vision, the numerical encoding of 3D surfaces is crucial. It is classical to represent surfaces with their Signed Distance Functions (SDFs) or Unsigned Distance Functions (UDFs). For tasks like representation learning, surface classification, or surface reconstruction, this function can be learned by a neural network, called Neural Distance Function. This network, and in particular its weights, may serve as a parametric and implicit representation for the surface. The network must represent the surface as accurately as possible. In this paper, we propose a method for learning UDFs that improves the fidelity of the obtained Neural UDF to the original 3D surface. The key idea of our method is to concentrate the learning effort of the Neural UDF on surface edges. More precisely, we show that sampling more training points around surface edges allows better local accuracy of the trained Neural UDF, and thus improves the global expressiveness of the Neural UDF in terms of Hausdorff distance. To detect surface edges, we propose a new statistical method based on the calculation of a $p$-value at each point on the surface. Our method is shown to detect surface edges more accurately than a commonly used local geometric descriptor.
- Abstract(参考訳): コンピュータビジョンの分野では、3次元曲面の数値符号化が不可欠である。
SDF(Signed Distance Function)やUDF(Unsigned Distance Function)で表される。
表現学習、表面分類、表面再構成などのタスクでは、ニューラルネットワーク(Neural Distance Function)と呼ばれる関数が学習される。
このネットワーク、特にその重みは、表面のパラメトリックで暗黙的な表現として機能する。
ネットワークは可能な限り正確に表面を表現しなければならない。
本稿では,得られたニューラルUDFの元の3次元表面への忠実度を向上させるUDFの学習法を提案する。
提案手法の鍵となる考え方は,ニューラルUDFの学習を表面エッジに集中させることである。
より正確には、表面縁周辺でより多くのトレーニングポイントをサンプリングすることで、トレーニングされたニューラルUDFの局所的精度が向上し、ハウゼンドルフ距離の観点からニューラルUDFのグローバルな表現性が向上することを示す。
表面のエッジを検出するために,表面の各点における$p$-値の計算に基づく新しい統計手法を提案する。
本手法は局所的な幾何学的記述子よりも表面のエッジを高精度に検出する。
関連論文リスト
- Gradient Distance Function [52.615859148238464]
また,GDF (Gradient Distance Function) は表面上での微分可能でありながら,開口面を表現可能であることを示す。
これは、ノルムが表面への符号のない距離である3Dベクトルをそれぞれ3Dポイントに関連付けることによって行われる。
本稿では,ShapeNet Car,Multi-Garment,および3D-SceneデータセットにおけるGDFの有効性を示す。
論文 参考訳(メタデータ) (2024-10-29T18:04:01Z) - NeAT: Learning Neural Implicit Surfaces with Arbitrary Topologies from
Multi-view Images [17.637064969966847]
NeATは、多視点画像から任意のトポロジを持つ暗黙の曲面を学習する、新しいニューラルネットワークレンダリングフレームワークである。
NeATは、古典的なマーチングキューブアルゴリズムを用いて、フィールドからメッシュへの変換を容易にする。
我々のアプローチは、水密面と非水密面の両方を忠実に再構築することができる。
論文 参考訳(メタデータ) (2023-03-21T16:49:41Z) - NeuralUDF: Learning Unsigned Distance Fields for Multi-view
Reconstruction of Surfaces with Arbitrary Topologies [87.06532943371575]
本稿では2次元画像からボリュームレンダリングにより任意の位相で表面を再構成する新しい手法であるNeuralUDFを提案する。
本稿では,表面をUDF(Unsigned Distance Function)として表現し,ニューラルUDF表現を学習するための新しいボリュームレンダリング手法を提案する。
論文 参考訳(メタデータ) (2022-11-25T15:21:45Z) - CAP-UDF: Learning Unsigned Distance Functions Progressively from Raw Point Clouds with Consistency-Aware Field Optimization [54.69408516025872]
CAP-UDFは、生の点雲から一貫性を考慮したUDFを学ぶための新しい方法である。
我々は、クエリと近似曲面の関係を徐々に推測するようにニューラルネットワークを訓練する。
学習されたUDFの勾配を用いて表面を抽出する多角化アルゴリズムも導入する。
論文 参考訳(メタデータ) (2022-10-06T08:51:08Z) - Neural Vector Fields for Implicit Surface Representation and Inference [73.25812045209001]
近年, 3次元形状を正確に表現し, 学習する試みが盛んに行われている。
我々は、3次元空間における単位ベクトルを考慮し、それをベクトル場(Vector Field, VF)と呼ぶ新しい基本表現を開発する。
VF表現の利点は、オープン、クローズド、多層化、平面面の断片化である。
論文 参考訳(メタデータ) (2022-04-13T17:53:34Z) - Deep Implicit Surface Point Prediction Networks [49.286550880464866]
暗黙の関数としての3次元形状の深い神経表現は、高忠実度モデルを生成することが示されている。
本稿では,CSP(Nest Surface-point)表現と呼ばれる新しい種類の暗黙の表現を用いて,そのような曲面をモデル化する新しいアプローチを提案する。
論文 参考訳(メタデータ) (2021-06-10T14:31:54Z) - Neural-Pull: Learning Signed Distance Functions from Point Clouds by
Learning to Pull Space onto Surfaces [68.12457459590921]
3次元点雲から連続曲面を再構成することは、3次元幾何処理の基本的な操作である。
textitNeural-Pullは、シンプルで高品質なSDFを実現する新しいアプローチです。
論文 参考訳(メタデータ) (2020-11-26T23:18:10Z) - Neural Unsigned Distance Fields for Implicit Function Learning [53.241423815726925]
任意の3次元形状の符号なし距離場を予測するニューラルネットワークベースモデルであるニューラル距離場(NDF)を提案する。
NDFは、高解像度の表面を事前の暗黙のモデルとして表現するが、クローズドな表面データを必要としない。
NDFは、グラフィックスのレンダリングにのみ使用される技術を用いて、マルチターゲットレグレッション(1入力に複数の出力)に使用できる。
論文 参考訳(メタデータ) (2020-10-26T22:49:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。