論文の概要: Deep Implicit Surface Point Prediction Networks
- arxiv url: http://arxiv.org/abs/2106.05779v1
- Date: Thu, 10 Jun 2021 14:31:54 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-11 21:30:48.655415
- Title: Deep Implicit Surface Point Prediction Networks
- Title(参考訳): 深部暗黙的表面点予測ネットワーク
- Authors: Rahul Venkatesh, Tejan Karmali, Sarthak Sharma, Aurobrata Ghosh,
L\'aszl\'o A. Jeni, R. Venkatesh Babu, Maneesh Singh
- Abstract要約: 暗黙の関数としての3次元形状の深い神経表現は、高忠実度モデルを生成することが示されている。
本稿では,CSP(Nest Surface-point)表現と呼ばれる新しい種類の暗黙の表現を用いて,そのような曲面をモデル化する新しいアプローチを提案する。
- 参考スコア(独自算出の注目度): 49.286550880464866
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep neural representations of 3D shapes as implicit functions have been
shown to produce high fidelity models surpassing the resolution-memory
trade-off faced by the explicit representations using meshes and point clouds.
However, most such approaches focus on representing closed shapes. Unsigned
distance function (UDF) based approaches have been proposed recently as a
promising alternative to represent both open and closed shapes. However, since
the gradients of UDFs vanish on the surface, it is challenging to estimate
local (differential) geometric properties like the normals and tangent planes
which are needed for many downstream applications in vision and graphics. There
are additional challenges in computing these properties efficiently with a
low-memory footprint. This paper presents a novel approach that models such
surfaces using a new class of implicit representations called the closest
surface-point (CSP) representation. We show that CSP allows us to represent
complex surfaces of any topology (open or closed) with high fidelity. It also
allows for accurate and efficient computation of local geometric properties. We
further demonstrate that it leads to efficient implementation of downstream
algorithms like sphere-tracing for rendering the 3D surface as well as to
create explicit mesh-based representations. Extensive experimental evaluation
on the ShapeNet dataset validate the above contributions with results
surpassing the state-of-the-art.
- Abstract(参考訳): 暗黙の関数としての3次元形状の深い神経表現は、メッシュと点雲を用いた明示的な表現によって直面する解像度-メモリトレードオフを超える高忠実度モデルを生成することが示されている。
しかし、そのようなアプローチのほとんどは閉じた形を表現することに焦点を当てている。
非符号距離関数(UDF)に基づくアプローチは、最近オープン形状とクローズ形状の両方を表すための有望な代替として提案されている。
しかし、UDFの勾配が表面でなくなるため、視覚やグラフィックスにおける多くの下流アプリケーションに必要な正規や接面のような局所的な(微分)幾何学的性質を推定することは困難である。
これらのプロパティを低メモリフットプリントで効率的に計算するには、さらに課題がある。
本稿では, 近接面点 (csp) 表現と呼ばれる新しい階層の暗黙表現を用いて, 曲面をモデル化する新しい手法を提案する。
CSPにより、任意の位相(開あるいは閉)の複素曲面を高い忠実度で表現できることが示される。
また、局所幾何学的性質の正確かつ効率的な計算を可能にする。
さらに、3D表面をレンダリングするスフィアトレーシングのような下流アルゴリズムを効率よく実装し、メッシュベースの明示的な表現を作成できることを示す。
shapenetデータセットの広範な実験的評価は、上記の貢献が最先端の成果を上回っていることを検証している。
関連論文リスト
- Geometry Distributions [51.4061133324376]
本稿では,分布として幾何学をモデル化する新しい幾何学的データ表現を提案する。
提案手法では,新しいネットワークアーキテクチャを用いた拡散モデルを用いて表面点分布の学習を行う。
本研究では,多種多様な対象に対して質的かつ定量的に表現を評価し,その有効性を実証した。
論文 参考訳(メタデータ) (2024-11-25T04:06:48Z) - LISR: Learning Linear 3D Implicit Surface Representation Using Compactly
Supported Radial Basis Functions [5.056545768004376]
部分的かつノイズの多い3次元点雲スキャンから物体を3次元表面で再構成することは、古典的な幾何学処理と3次元コンピュータビジョンの問題である。
本稿では,物体の3次元表面の線形暗黙的形状表現を学習するためのニューラルネットワークアーキテクチャを提案する。
提案手法は,ベンチマークデータセットの最先端手法よりも,チャムファー距離と同等のFスコアを実現する。
論文 参考訳(メタデータ) (2024-02-11T20:42:49Z) - Surf-D: Generating High-Quality Surfaces of Arbitrary Topologies Using Diffusion Models [83.35835521670955]
Surf-Dは任意の位相を持つ表面として高品質な3次元形状を生成する新しい方法である。
非符号距離場(UDF)を曲面表現として用いて任意の位相を許容する。
また、ポイントベースのAutoEncoderを用いて、UDFを正確に符号化するためのコンパクトで連続的な潜在空間を学習する新しいパイプラインを提案する。
論文 参考訳(メタデータ) (2023-11-28T18:56:01Z) - Flattening-Net: Deep Regular 2D Representation for 3D Point Cloud
Analysis [66.49788145564004]
我々は、任意の幾何学と位相の不規則な3次元点雲を表現するために、Flattning-Netと呼ばれる教師なしのディープニューラルネットワークを提案する。
我々の手法は、現在の最先端の競合相手に対して好意的に機能する。
論文 参考訳(メタデータ) (2022-12-17T15:05:25Z) - NeuralUDF: Learning Unsigned Distance Fields for Multi-view
Reconstruction of Surfaces with Arbitrary Topologies [87.06532943371575]
本稿では2次元画像からボリュームレンダリングにより任意の位相で表面を再構成する新しい手法であるNeuralUDFを提案する。
本稿では,表面をUDF(Unsigned Distance Function)として表現し,ニューラルUDF表現を学習するための新しいボリュームレンダリング手法を提案する。
論文 参考訳(メタデータ) (2022-11-25T15:21:45Z) - OctField: Hierarchical Implicit Functions for 3D Modeling [18.488778913029805]
我々は3次元曲面の学習可能な階層的暗黙表現であるOctoFieldを提案し、メモリと計算予算の少ない複雑な曲面の高精度符号化を可能にする。
この目的を達成するために、曲面占有率と部分幾何学の豊かさに応じて3次元空間を適応的に分割する階層的オクツリー構造を導入する。
論文 参考訳(メタデータ) (2021-11-01T16:29:39Z) - DUDE: Deep Unsigned Distance Embeddings for Hi-Fidelity Representation
of Complex 3D Surfaces [8.104199886760275]
DUDE は、非符号距離場 (uDF) を用いて表面との近接を表現し、正規ベクトル場 (nVF) は表面の向きを表現している。
この2つの組み合わせ (uDF+nVF) を用いて任意の開/閉形状の高忠実度表現を学習できることを示す。
論文 参考訳(メタデータ) (2020-11-04T22:49:05Z) - Neural Unsigned Distance Fields for Implicit Function Learning [53.241423815726925]
任意の3次元形状の符号なし距離場を予測するニューラルネットワークベースモデルであるニューラル距離場(NDF)を提案する。
NDFは、高解像度の表面を事前の暗黙のモデルとして表現するが、クローズドな表面データを必要としない。
NDFは、グラフィックスのレンダリングにのみ使用される技術を用いて、マルチターゲットレグレッション(1入力に複数の出力)に使用できる。
論文 参考訳(メタデータ) (2020-10-26T22:49:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。