Swin transformers are robust to distribution and concept drift in endoscopy-based longitudinal rectal cancer assessment
- URL: http://arxiv.org/abs/2405.03762v4
- Date: Thu, 30 Jan 2025 16:01:20 GMT
- Title: Swin transformers are robust to distribution and concept drift in endoscopy-based longitudinal rectal cancer assessment
- Authors: Jorge Tapias Gomez, Aneesh Rangnekar, Hannah Williams, Hannah Thompson, Julio Garcia-Aguilar, Joshua Jesse Smith, Harini Veeraraghavan,
- Abstract summary: Endoscopic images are used at various stages of rectal cancer treatment to assess response and toxicity from treatments.<n> subjective assessment is highly variable and can underestimate the degree of response in some patients.<n>Advances in deep learning has shown the ability to produce consistent and objective response assessment for endoscopic images.
- Score: 3.0468533447146244
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Endoscopic images are used at various stages of rectal cancer treatment starting from cancer screening, diagnosis, during treatment to assess response and toxicity from treatments such as colitis, and at follow up to detect new tumor or local regrowth (LR). However, subjective assessment is highly variable and can underestimate the degree of response in some patients, subjecting them to unnecessary surgery, or overestimate response that places patients at risk of disease spread. Advances in deep learning has shown the ability to produce consistent and objective response assessment for endoscopic images. However, methods for detecting cancers, regrowth, and monitoring response during the entire course of patient treatment and follow-up are lacking. This is because, automated diagnosis and rectal cancer response assessment requires methods that are robust to inherent imaging illumination variations and confounding conditions (blood, scope, blurring) present in endoscopy images as well as changes to the normal lumen and tumor during treatment. Hence, a hierarchical shifted window (Swin) transformer was trained to distinguish rectal cancer from normal lumen using endoscopy images. Swin as well as two convolutional (ResNet-50, WideResNet-50), and vision transformer (ViT) models were trained and evaluated on follow-up longitudinal images to detect LR on private dataset as well as on out-of-distribution (OOD) public colonoscopy datasets to detect pre/non-cancerous polyps. Color shifts were applied using optimal transport to simulate distribution shifts. Swin and ResNet models were similarly accurate in the in-distribution dataset. Swin was more accurate than other methods (follow-up: 0.84, OOD: 0.83) even when subject to color shifts (follow-up: 0.83, OOD: 0.87), indicating capability to provide robust performance for longitudinal cancer assessment.
Related papers
- Towards a deep learning approach for classifying treatment response in glioblastomas [0.0]
Glioblastomas are the most aggressive type of glioma, having a 5-year survival rate of 6.9%.
radiologists use the Response Assessment in Neuro-Oncology (RANO) criteria to categorize the tumor into one of four labels based on imaging and clinical features.
Since deep learning has been widely used to tackle classification problems, this work aimed to implement the first DL pipeline for the classification of RANO criteria.
arXiv Detail & Related papers (2025-04-25T11:27:05Z) - Lung-CADex: Fully automatic Zero-Shot Detection and Classification of Lung Nodules in Thoracic CT Images [45.29301790646322]
Computer-aided diagnosis can help with early lung nodul detection and facilitate subsequent nodule characterization.
We propose CADe, for segmenting lung nodules in a zero-shot manner using a variant of the Segment Anything Model called MedSAM.
We also propose, CADx, a method for the nodule characterization as benign/malignant by making a gallery of radiomic features and aligning image-feature pairs through contrastive learning.
arXiv Detail & Related papers (2024-07-02T19:30:25Z) - Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
Grading plays a vital role in breast cancer treatment planning.
The current tumor grading method involves extracting tissue from patients, leading to stress, discomfort, and high medical costs.
This paper examines using optimized CDI$s$ to improve breast cancer grade prediction.
arXiv Detail & Related papers (2024-05-13T15:48:26Z) - Step-Calibrated Diffusion for Biomedical Optical Image Restoration [47.191704042917394]
Restorative Step-Calibrated Diffusion (RSCD) is an unpaired diffusion-based image restoration method.
RSCD outperforms other widely used unpaired image restoration methods on both image quality and perceptual evaluation.
RSCD improves performance on downstream clinical imaging tasks, including automated brain tumor diagnosis and deep tissue imaging.
arXiv Detail & Related papers (2024-03-20T15:38:53Z) - Realism in Action: Anomaly-Aware Diagnosis of Brain Tumors from Medical Images Using YOLOv8 and DeiT [1.024113475677323]
This study addresses the issue by leveraging deep learning (DL) techniques to detect and classify brain tumors in challenging situations.
The curated data set from the National Brain Mapping Lab (NBML) comprises 81 patients, including 30 Tumor cases and 51 Normal cases.
This approach demonstrates promising strides in reliable tumor detection and classification, offering potential advancements in tumor diagnosis for real-world medical imaging scenarios.
arXiv Detail & Related papers (2024-01-06T20:53:02Z) - Semi-supervised ViT knowledge distillation network with style transfer
normalization for colorectal liver metastases survival prediction [1.283897253352624]
We propose an end-to-end approach for automated prognosis prediction using histology slides stained with H&E and HPS.
We first employ a Generative Adversarial Network (GAN) for slide normalization to reduce staining variations and improve the overall quality of the images that are used as input to our prediction pipeline.
We exploit the extracted features for the metastatic nodules and surrounding tissue to train a prognosis model. In parallel, we train a vision Transformer (ViT) in a knowledge distillation framework to replicate and enhance the performance of the prognosis prediction.
arXiv Detail & Related papers (2023-11-17T03:32:11Z) - Full-resolution Lung Nodule Segmentation from Chest X-ray Images using
Residual Encoder-Decoder Networks [21.724154440093216]
Lung cancer is the leading cause of cancer death and early diagnosis is associated with a positive prognosis.
Computer vision has previously been proposed to assist human radiologists in this task.
This study localizes lung nodules using efficient encoder-decoder neural networks.
arXiv Detail & Related papers (2023-07-13T04:05:39Z) - Validated respiratory drug deposition predictions from 2D and 3D medical
images with statistical shape models and convolutional neural networks [47.187609203210705]
We aim to develop and validate an automated computational framework for patient-specific deposition modelling.
An image processing approach is proposed that could produce 3D patient respiratory geometries from 2D chest X-rays and 3D CT images.
arXiv Detail & Related papers (2023-03-02T07:47:07Z) - Domain-specific transfer learning in the automated scoring of
tumor-stroma ratio from histopathological images of colorectal cancer [1.2264932946286657]
Tumor-stroma ratio (TSR) is a prognostic factor for many types of solid tumors.
The method is based on convolutional neural networks which were trained to classify colorectal cancer tissue.
arXiv Detail & Related papers (2022-12-30T12:27:27Z) - A Novel Implementation of Machine Learning for the Efficient,
Explainable Diagnosis of COVID-19 from Chest CT [0.0]
The aim of this study was to take a novel approach in the machine learning-based detection of COVID-19 from chest CT scans.
The proposed model attained an overall accuracy of 0.927 and a sensitivity of 0.958.
arXiv Detail & Related papers (2022-06-15T18:35:22Z) - Automated SSIM Regression for Detection and Quantification of Motion
Artefacts in Brain MR Images [54.739076152240024]
Motion artefacts in magnetic resonance brain images are a crucial issue.
The assessment of MR image quality is fundamental before proceeding with the clinical diagnosis.
An automated image quality assessment based on the structural similarity index (SSIM) regression has been proposed here.
arXiv Detail & Related papers (2022-06-14T10:16:54Z) - Texture Characterization of Histopathologic Images Using Ecological
Diversity Measures and Discrete Wavelet Transform [82.53597363161228]
This paper proposes a method for characterizing texture across histopathologic images with a considerable success rate.
It is possible to quantify the intrinsic properties of such images with promising accuracy on two HI datasets.
arXiv Detail & Related papers (2022-02-27T02:19:09Z) - Spectral-Spatial Recurrent-Convolutional Networks for In-Vivo
Hyperspectral Tumor Type Classification [49.32653090178743]
We demonstrate the feasibility of in-vivo tumor type classification using hyperspectral imaging and deep learning.
Our best model achieves an AUC of 76.3%, significantly outperforming previous conventional and deep learning methods.
arXiv Detail & Related papers (2020-07-02T12:00:53Z) - Severity Assessment of Coronavirus Disease 2019 (COVID-19) Using
Quantitative Features from Chest CT Images [54.919022945740515]
The aim of this study is to realize automatic severity assessment (non-severe or severe) of COVID-19 based on chest CT images.
A random forest (RF) model is trained to assess the severity (non-severe or severe) based on quantitative features.
Several quantitative features, which have the potential to reflect the severity of COVID-19, were revealed.
arXiv Detail & Related papers (2020-03-26T15:49:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.