論文の概要: Near-optimal decoding algorithm for color codes using Population Annealing
- arxiv url: http://arxiv.org/abs/2405.03776v1
- Date: Mon, 6 May 2024 18:17:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-08 18:14:30.665484
- Title: Near-optimal decoding algorithm for color codes using Population Annealing
- Title(参考訳): Population Annealing を用いた色符号の準最適復号法
- Authors: Fernando Martínez-García, Francisco Revson F. Pereira, Pedro Parrado-Rodríguez,
- Abstract要約: 回復操作を高い確率で行うデコーダを実装した。
異なる雑音モデルの下で4.8.8色符号格子上でのデコーダ性能について検討する。
- 参考スコア(独自算出の注目度): 44.99833362998488
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The development and use of large-scale quantum computers relies on integrating quantum error-correcting (QEC) schemes into the quantum computing pipeline. A fundamental part of the QEC protocol is the decoding of the syndrome to identify a recovery operation with a high success rate. In this work, we implement a decoder that finds the recovery operation with the highest success probability by mapping the decoding problem to a spin system and using Population Annealing to estimate the free energy of the different error classes. We study the decoder performance on a 4.8.8 color code lattice under different noise models, including code capacity with bit-flip and depolarizing noise, and phenomenological noise, which considers noisy measurements, with performance reaching near-optimal thresholds. This decoding algorithm can be applied to a wide variety of stabilizer codes, including surface codes and quantum low-density parity-check (qLDPC) codes.
- Abstract(参考訳): 大規模量子コンピュータの開発と利用は、量子エラー訂正(QEC)スキームを量子コンピューティングパイプラインに統合することに依存している。
QECプロトコルの基本的な部分は、回復操作を高い成功率で識別するシンドロームの復号化である。
本研究では,デコード問題をスピン系にマッピングし,ポピュレーションアニーリングを用いて異なるエラークラスの自由エネルギーを推定することにより,回復操作を最も高い成功確率で行うデコーダを実装した。
我々は,ビットフリップおよび偏極雑音を有する符号容量を含む異なる雑音モデル下での4.8.8色符号格子上でのデコーダ性能について検討した。
この復号アルゴリズムは、表面符号や量子低密度パリティチェック(qLDPC)符号など、様々な安定化符号に適用できる。
関連論文リスト
- Breadth-first graph traversal union-find decoder [0.0]
我々はその実装を単純化し、潜在的な復号速度の利点を提供するUnion-findデコーダの変種を開発する。
これらの手法が、非トポロジカル量子低密度パリティチェック符号のデコードにどのように適用できるかを示す。
論文 参考訳(メタデータ) (2024-07-22T18:54:45Z) - Testing the Accuracy of Surface Code Decoders [55.616364225463066]
大規模でフォールトトレラントな量子計算は量子エラー訂正符号(QECC)によって実現される
本研究は,QECC復号方式の精度と有効性をテストするための最初の体系的手法である。
論文 参考訳(メタデータ) (2023-11-21T10:22:08Z) - The END: An Equivariant Neural Decoder for Quantum Error Correction [73.4384623973809]
データ効率のよいニューラルデコーダを導入し、この問題の対称性を活用する。
本稿では,従来のニューラルデコーダに比べて精度の高い新しい同変アーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-04-14T19:46:39Z) - Deep Quantum Error Correction [73.54643419792453]
量子誤り訂正符号(QECC)は、量子コンピューティングのポテンシャルを実現するための鍵となる要素である。
本研究では,新しいエンペンド・ツー・エンドの量子誤りデコーダを効率的に訓練する。
提案手法は,最先端の精度を実現することにより,QECCのニューラルデコーダのパワーを実証する。
論文 参考訳(メタデータ) (2023-01-27T08:16:26Z) - Neural Belief Propagation Decoding of Quantum LDPC Codes Using
Overcomplete Check Matrices [60.02503434201552]
元のチェック行列における行の線形結合から生成された冗長な行を持つチェック行列に基づいてQLDPC符号を復号する。
このアプローチは、非常に低い復号遅延の利点を付加して、復号性能を著しく向上させる。
論文 参考訳(メタデータ) (2022-12-20T13:41:27Z) - Quantum Error Correction via Noise Guessing Decoding [0.0]
量子誤り訂正符号(QECC)は、量子通信と量子計算の両方において中心的な役割を果たす。
本稿では,有限ブロック長レジームの最大性能を達成できるQECCの構築と復号化が可能であることを示す。
論文 参考訳(メタデータ) (2022-08-04T16:18:20Z) - Improved decoding of circuit noise and fragile boundaries of tailored
surface codes [61.411482146110984]
高速かつ高精度なデコーダを導入し、幅広い種類の量子誤り訂正符号で使用することができる。
我々のデコーダは、信仰マッチングと信念フィンドと呼ばれ、すべてのノイズ情報を活用し、QECの高精度なデモを解き放つ。
このデコーダは, 標準の正方形曲面符号に対して, 整形曲面符号において, より高いしきい値と低い量子ビットオーバーヘッドをもたらすことがわかった。
論文 参考訳(メタデータ) (2022-03-09T18:48:54Z) - Efficient Concatenated Bosonic Code for Additive Gaussian Noise [0.0]
ボソニック符号は量子情報処理のためのノイズレジリエンスを提供する。
本稿では,Gottesman-Kitaev-Preskill符号を用いて,デフォールトエラー発生キュービットと量子パリティ符号を用いて残差の処理を行う。
我々の研究は、幅広い量子計算と通信シナリオに応用できるかもしれない。
論文 参考訳(メタデータ) (2021-02-02T08:01:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。