論文の概要: Tensor Network Computations That Capture Strict Variationality, Volume Law Behavior, and the Efficient Representation of Neural Network States
- arxiv url: http://arxiv.org/abs/2405.03797v2
- Date: Tue, 21 May 2024 19:21:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-25 05:11:11.835155
- Title: Tensor Network Computations That Capture Strict Variationality, Volume Law Behavior, and the Efficient Representation of Neural Network States
- Title(参考訳): 厳密な変動性、容積法則の振る舞い、ニューラルネットワーク状態の効率的な表現をキャプチャするテンソルネットワーク計算
- Authors: Wen-Yuan Liu, Si-Jing Du, Ruojing Peng, Johnnie Gray, Garnet Kin-Lic Chan,
- Abstract要約: 本稿では,振幅の収縮の計算グラフによって定義されるテンソルネットワーク状態の視点変化を紹介する。
結果として得られる状態のクラスはテンソルネットワーク関数と呼ばれ、テンソルネットワーク状態の概念上の利点を継承し、近似された収縮を収束させる必要から生じる計算的制約を除去する。
テンソルネットワーク関数を用いて、ループグラフ上のエネルギーの厳密な変動推定を計算し、基底状態の表現力を解析し、体積法則の時間進化の側面を捉え、一般的なフィードフォワードニューラルネットワークの効率的なテンソルネットワーク関数へのマッピングを提供する。
- 参考スコア(独自算出の注目度): 0.6148049086034199
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a change of perspective on tensor network states that is defined by the computational graph of the contraction of an amplitude. The resulting class of states, which we refer to as tensor network functions, inherit the conceptual advantages of tensor network states while removing computational restrictions arising from the need to converge approximate contractions. We use tensor network functions to compute strict variational estimates of the energy on loopy graphs, analyze their expressive power for ground-states, show that we can capture aspects of volume law time evolution, and provide a mapping of general feed-forward neural nets onto efficient tensor network functions. Our work expands the realm of computable tensor networks to ones where accurate contraction methods are not available, and opens up new avenues to use tensor networks.
- Abstract(参考訳): 本稿では,振幅の収縮の計算グラフによって定義されるテンソルネットワーク状態の視点変化を紹介する。
結果として得られる状態のクラスはテンソルネットワーク関数と呼ばれ、テンソルネットワーク状態の概念上の利点を継承し、近似された収縮を収束させる必要から生じる計算的制約を除去する。
テンソルネットワーク関数を用いて、ループグラフ上のエネルギーの厳密な変動推定を計算し、基底状態の表現力を解析し、体積法則の時間進化の側面を捉え、一般的なフィードフォワードニューラルネットワークの効率的なテンソルネットワーク関数へのマッピングを提供する。
我々の研究は、計算可能なテンソルネットワークの領域を、正確な収縮法が利用できない領域に拡大し、テンソルネットワークを使用するための新たな道を開く。
関連論文リスト
- Coding schemes in neural networks learning classification tasks [52.22978725954347]
完全接続型広義ニューラルネットワーク学習タスクについて検討する。
ネットワークが強力なデータ依存機能を取得することを示す。
驚くべきことに、内部表現の性質は神経の非線形性に大きく依存する。
論文 参考訳(メタデータ) (2024-06-24T14:50:05Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - Hyper-optimized approximate contraction of tensor networks with
arbitrary geometry [0.0]
任意のグラフ上の結合圧縮によりテンソルネットワークの収縮を近似する方法を述べる。
特に,圧縮・収縮戦略自体に対する過度な最適化を導入し,誤差とコストを最小化する。
論文 参考訳(メタデータ) (2022-06-14T17:59:16Z) - Tensor Network States with Low-Rank Tensors [6.385624548310884]
テンソルネットワークを構成するテンソルに低ランク制約を課すという考え方を導入する。
この修正により、ネットワーク最適化の時間と複雑さを大幅に削減できる。
テンソル階数 $r$ を$m$ の順序で選ぶことは、高い精度の基底状態近似を得るのに十分である。
論文 参考訳(メタデータ) (2022-05-30T17:58:16Z) - A Practical Guide to the Numerical Implementation of Tensor Networks I:
Contractions, Decompositions and Gauge Freedom [0.0]
本稿では,テンソルネットワークの手法を数値的に実装するために必要な重要なアイデアとスキルについて概説する。
提案するトピックは、DMRG、TEBD、TRG、PEPS、MERAといった多くの一般的なテンソルネットワークアルゴリズムにおいて重要である。
論文 参考訳(メタデータ) (2022-02-04T14:10:09Z) - Tensor-Train Networks for Learning Predictive Modeling of
Multidimensional Data [0.0]
有望な戦略は、物理的および化学的用途で非常に成功したテンソルネットワークに基づいています。
本研究では, 多次元回帰モデルの重みをテンソルネットワークを用いて学習し, 強力なコンパクト表現を実現することを示した。
TT形式の重みを計算力の低減で近似するための最小二乗を交互に行うアルゴリズムが提案されている。
論文 参考訳(メタデータ) (2021-01-22T16:14:38Z) - A Convergence Theory Towards Practical Over-parameterized Deep Neural
Networks [56.084798078072396]
ネットワーク幅と収束時間の両方で既知の理論境界を大幅に改善することにより、理論と実践のギャップを埋める一歩を踏み出します。
本研究では, サンプルサイズが2次幅で, 両者の時間対数で線形なネットワークに対して, 地球最小値への収束が保証されていることを示す。
私たちの分析と収束境界は、いつでも合理的なサイズの同等のRELUネットワークに変換できる固定アクティベーションパターンを備えたサロゲートネットワークの構築によって導出されます。
論文 参考訳(メタデータ) (2021-01-12T00:40:45Z) - T-Basis: a Compact Representation for Neural Networks [89.86997385827055]
テンソルの集合をコンパクトに表現するための概念である T-Basis をニューラルネットワークでよく見られる任意の形状で導入する。
ニューラルネットワーク圧縮の課題に対する提案手法の評価を行い, 許容性能低下時に高い圧縮速度に達することを示す。
論文 参考訳(メタデータ) (2020-07-13T19:03:22Z) - Anomaly Detection with Tensor Networks [2.3895981099137535]
テンソルネットワークのメモリと計算効率を利用して、原特徴数の次元指数で空間上の線形変換を学習する。
画像の局所性を利用していないにもかかわらず、画像データセット上で競合する結果を生成する。
論文 参考訳(メタデータ) (2020-06-03T20:41:30Z) - Molecule Property Prediction and Classification with Graph Hypernetworks [113.38181979662288]
ネットワークをハイパーネットワークに置き換えることで性能が向上することを示す。
ハイパーネットワークの適用において大きな困難は、安定性の欠如である。
最近の研究は、エラー訂正コードのコンテキストにおいて、ハイパーネットワークのトレーニング不安定性に取り組んでいる。
論文 参考訳(メタデータ) (2020-02-01T16:44:34Z) - Understanding Generalization in Deep Learning via Tensor Methods [53.808840694241]
圧縮の観点から,ネットワークアーキテクチャと一般化可能性の関係について理解を深める。
本稿では、ニューラルネットワークの圧縮性と一般化性を強く特徴付ける、直感的で、データ依存的で、測定が容易な一連の特性を提案する。
論文 参考訳(メタデータ) (2020-01-14T22:26:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。