論文の概要: Hyper-optimized approximate contraction of tensor networks with
arbitrary geometry
- arxiv url: http://arxiv.org/abs/2206.07044v2
- Date: Thu, 5 Oct 2023 23:00:42 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-13 16:39:19.970740
- Title: Hyper-optimized approximate contraction of tensor networks with
arbitrary geometry
- Title(参考訳): 任意の幾何学を持つテンソルネットワークの超最適化近似収縮
- Authors: Johnnie Gray and Garnet Kin-Lic Chan
- Abstract要約: 任意のグラフ上の結合圧縮によりテンソルネットワークの収縮を近似する方法を述べる。
特に,圧縮・収縮戦略自体に対する過度な最適化を導入し,誤差とコストを最小化する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Tensor network contraction is central to problems ranging from many-body
physics to computer science. We describe how to approximate tensor network
contraction through bond compression on arbitrary graphs. In particular, we
introduce a hyper-optimization over the compression and contraction strategy
itself to minimize error and cost. We demonstrate that our protocol outperforms
both hand-crafted contraction strategies in the literature as well as recently
proposed general contraction algorithms on a variety of synthetic and physical
problems on regular lattices and random regular graphs. We further showcase the
power of the approach by demonstrating approximate contraction of tensor
networks for frustrated three-dimensional lattice partition functions, dimer
counting on random regular graphs, and to access the hardness transition of
random tensor network models, in graphs with many thousands of tensors.
- Abstract(参考訳): テンソルネットワークの収縮は、多体物理学からコンピュータ科学まで幅広い問題の中心である。
任意のグラフ上の結合圧縮によりテンソルネットワークの収縮を近似する方法を述べる。
特に,圧縮・収縮戦略自体に対する過度な最適化を導入し,誤差とコストを最小化する。
我々は,本プロトコルが文献における手作り収縮戦略と,最近提案された正規格子およびランダム正則グラフ上の様々な合成および物理問題に関する一般収縮アルゴリズムの両方より優れていることを示す。
さらに, フラストレーション付き3次元格子分割関数に対するテンソルネットワークの近似収縮, ランダム正規グラフ上のダイマー数, および数万のテンソルを持つグラフにおけるランダムテンソルネットワークモデルの硬さ遷移にアクセスすることで, アプローチのパワーを実証する。
関連論文リスト
- Provable Tensor Completion with Graph Information [49.08648842312456]
本稿では,動的グラフ正規化テンソル完備問題の解法として,新しいモデル,理論,アルゴリズムを提案する。
我々はテンソルの低ランクおよび類似度構造を同時に捉える包括的モデルを開発する。
理論の観点からは、提案したグラフの滑らか度正規化と重み付きテンソル核ノルムとの整合性を示す。
論文 参考訳(メタデータ) (2023-10-04T02:55:10Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
本稿では,任意のノード間のノード信号を効率的に伝搬する全ペアメッセージパッシング方式を提案する。
効率的な計算は、カーナライズされたGumbel-Softmax演算子によって実現される。
グラフ上のノード分類を含む様々なタスクにおいて,本手法の有望な有効性を示す実験を行った。
論文 参考訳(メタデータ) (2023-06-14T09:21:15Z) - Theory on variational high-dimensional tensor networks [2.0307382542339485]
ランダムな高次元ネットワーク状態の創発的統計特性とテンソルネットワークのトレーニング可能性について検討する。
変動高次元ネットワークが大域的損失関数のバレンプラトーに悩まされていることを証明した。
この結果は、将来の理論的研究と実践的応用の道を開くものである。
論文 参考訳(メタデータ) (2023-03-30T15:26:30Z) - Improvements to Gradient Descent Methods for Quantum Tensor Network
Machine Learning [0.0]
任意のテンソルネットワークの初期化に成功したコピーノード方式を提案する。
本稿では、量子インスパイアされたテンソルネットワークモデルを生成する手法の組み合わせを示す数値的な結果を示す。
論文 参考訳(メタデータ) (2022-03-03T19:00:40Z) - Joint Network Topology Inference via Structured Fusion Regularization [70.30364652829164]
結合ネットワークトポロジ推論は、異種グラフ信号から複数のグラフラプラシア行列を学習する標準的な問題を表す。
新規な構造化融合正規化に基づく一般グラフ推定器を提案する。
提案するグラフ推定器は高い計算効率と厳密な理論保証の両方を享受できることを示す。
論文 参考訳(メタデータ) (2021-03-05T04:42:32Z) - Tensor-Train Networks for Learning Predictive Modeling of
Multidimensional Data [0.0]
有望な戦略は、物理的および化学的用途で非常に成功したテンソルネットワークに基づいています。
本研究では, 多次元回帰モデルの重みをテンソルネットワークを用いて学習し, 強力なコンパクト表現を実現することを示した。
TT形式の重みを計算力の低減で近似するための最小二乗を交互に行うアルゴリズムが提案されている。
論文 参考訳(メタデータ) (2021-01-22T16:14:38Z) - T-Basis: a Compact Representation for Neural Networks [89.86997385827055]
テンソルの集合をコンパクトに表現するための概念である T-Basis をニューラルネットワークでよく見られる任意の形状で導入する。
ニューラルネットワーク圧縮の課題に対する提案手法の評価を行い, 許容性能低下時に高い圧縮速度に達することを示す。
論文 参考訳(メタデータ) (2020-07-13T19:03:22Z) - Solving frustrated Ising models using tensor networks [0.0]
無限テンソルネットワーク % の観点でフラストレーションのあるイジングモデルを研究するための枠組みを開発する。
共有結合の重みを含むクラスタの選択を最適化することは、テンソルネットワークの収縮性にとって重要であることを示す。
本手法は, フラストレーションを施したイジングスピン系の残留エントロピーを, 次ネスト近傍の相互作用を持つ加ごめ格子上で計算することにより, 有効性を示す。
論文 参考訳(メタデータ) (2020-06-25T12:39:42Z) - Simple heuristics for efficient parallel tensor contraction and quantum
circuit simulation [1.4416132811087747]
本稿では,確率モデルを用いたテンソルネットワークの縮約のための並列アルゴリズムを提案する。
結果のアルゴリズムをランダム量子回路のシミュレーションに適用する。
論文 参考訳(メタデータ) (2020-04-22T23:00:42Z) - Understanding Generalization in Deep Learning via Tensor Methods [53.808840694241]
圧縮の観点から,ネットワークアーキテクチャと一般化可能性の関係について理解を深める。
本稿では、ニューラルネットワークの圧縮性と一般化性を強く特徴付ける、直感的で、データ依存的で、測定が容易な一連の特性を提案する。
論文 参考訳(メタデータ) (2020-01-14T22:26:57Z) - Understanding Graph Neural Networks with Generalized Geometric
Scattering Transforms [67.88675386638043]
散乱変換は、畳み込みニューラルネットワークのモデルとして機能する多層ウェーブレットベースのディープラーニングアーキテクチャである。
非対称ウェーブレットの非常に一般的なクラスに基づくグラフに対して、窓付きおよび非窓付き幾何散乱変換を導入する。
これらの非対称グラフ散乱変換は、対称グラフ散乱変換と多くの理論的保証を持つことを示す。
論文 参考訳(メタデータ) (2019-11-14T17:23:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。