論文の概要: EPOC: A Novel Pulse Generation Framework Incorporating Advanced Synthesis Techniques for Quantum Circuits
- arxiv url: http://arxiv.org/abs/2405.03804v1
- Date: Mon, 6 May 2024 19:20:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-08 18:04:44.978791
- Title: EPOC: A Novel Pulse Generation Framework Incorporating Advanced Synthesis Techniques for Quantum Circuits
- Title(参考訳): EPOC:量子回路のための高度な合成技術を導入した新しいパルス発生フレームワーク
- Authors: Jinglei Cheng, Yuchen Zhu, Yidong Zhou, Hang Ren, Zhixin Song, Zhiding Liang,
- Abstract要約: EPOCは量子回路のための効率的なパルス発生フレームワークである。
ZX-Calculus、回路分割、回路合成を組み合わせてパルス発生を加速する。
- 参考スコア(独自算出の注目度): 5.42802616500974
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper we propose EPOC, an efficient pulse generation framework for quantum circuits that combines ZX-Calculus, circuit partitioning, and circuit synthesis to accelerate pulse generation. Unlike previous works that focus on generating pulses from unitary matrices without exploring equivalent representations, EPOC employs a finer granularity approach by grouping quantum gates and decomposing the resulting unitary matrices into smaller ones using synthesis techniques. This enables increased parallelism and decreased latency in quantum pulses. EPOC also continuously optimizes the circuit by identifying equivalent representations, leading to further reductions in circuit latency while minimizing the computational overhead associated with quantum optimal control. We introduce circuit synthesis into the workflow of quantum optimal control for the first time and achieve a 31.74% reduction in latency compared to previous work and a 76.80% reduction compared to the gate-based method for creating pulses. The approach demonstrates the potential for significant performance improvements in quantum circuits while minimizing computational overhead.
- Abstract(参考訳): 本稿では、ZX-Calculus、回路分割、回路合成を組み合わせてパルス生成を高速化する、量子回路のための効率的なパルス生成フレームワークEPOCを提案する。
等価表現を探索することなくユニタリ行列からパルスを生成する従来の研究とは異なり、EPOCは量子ゲートをグループ化し、その結果のユニタリ行列をより小さなものに分解することで、より微細な粒度アプローチを採用する。
これにより、並列性が向上し、量子パルスの遅延が減少する。
EPOCはまた、等価表現を識別することで回路を継続的に最適化し、量子最適制御に関連する計算オーバーヘッドを最小限に抑えながら、回路遅延をさらに削減する。
回路合成を初めて量子最適制御のワークフローに導入し、前回の処理に比べて31.74%のレイテンシ削減を実現し、パルスを生成するゲートベースの手法と比較して76.80%の削減を実現した。
このアプローチは、計算オーバーヘッドを最小限に抑えながら、量子回路の大幅な性能向上の可能性を示す。
関連論文リスト
- Optimization at the Interface of Unitary and Non-unitary Quantum
Operations in PCOAST [0.3496513815948205]
Pauliベースの回路最適化・分析・合成ツールチェーン(PCOAST)は、量子回路を最適化するためのフレームワークとして導入された。
本稿では,単元演算と非単元演算の場合にPCOASTグラフを最適化するサブルーチンの集合に着目した。
本稿では,変分量子固有解法(VQE)アルゴリズムの例として,Intel Quantum SDKを用いたPCOAST最適化サブルーチンの評価を行った。
論文 参考訳(メタデータ) (2023-05-16T22:58:14Z) - Pulse-controlled qubit in semiconductor double quantum dots [57.916342809977785]
単一電子電荷量子ビットの量子制御のための数値最適化多パルスフレームワークを提案する。
新規な制御方式は、キュービットを断熱的に操作すると同時に、高速で一般的な単一キュービット回転を行う能力も保持する。
論文 参考訳(メタデータ) (2023-03-08T19:00:02Z) - Hybrid Gate-Pulse Model for Variational Quantum Algorithms [33.73469431747376]
現在の量子プログラムは主にゲートレベルでコンパイルされ、量子回路は量子ゲートで構成されている。
パルスレベルの最適化は、回路長の利点から研究者から注目を集めている。
これらの問題を緩和できるハイブリッドゲートパルスモデルを提案する。
論文 参考訳(メタデータ) (2022-12-01T17:06:35Z) - Pulse-efficient quantum machine learning [0.0]
パルス効率回路が量子機械学習アルゴリズムに与える影響について検討する。
パルス効率の伝送は平均回路長を大幅に短縮することがわかった。
我々は、ハミルトン変分アンザッツにパルス効率のトランスパイルを適用し、ノイズ誘起バレン高原の開始を遅らせることを示す。
論文 参考訳(メタデータ) (2022-11-02T18:00:01Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
テンソルネットワーク(TN)アルゴリズムは、パラメタライズド量子回路(PQC)にマッピングできる
本稿では,現実的な量子回路を用いてTN状態を近似する新しいプロトコルを提案する。
その結果、量子回路の逐次的な成長と最適化を含む1つの特定のプロトコルが、他の全ての手法より優れていることが明らかとなった。
論文 参考訳(メタデータ) (2022-09-01T17:08:41Z) - Fast Swapping in a Quantum Multiplier Modelled as a Queuing Network [64.1951227380212]
量子回路をキューネットワークとしてモデル化することを提案する。
提案手法はスケーラビリティが高く,大規模量子回路のコンパイルに必要となる潜在的な速度と精度を有する。
論文 参考訳(メタデータ) (2021-06-26T10:55:52Z) - Control optimization for parametric hamiltonians by pulse reconstruction [21.723487348914958]
本稿では,ハミルトニアンに対する制御パルスを生成するのに必要な計算時間を短縮する手法を提案する。
我々は、所定のパラメータ値の離散セットに対して予め得られたパルスの集合から制御パルスを正確に再構成する単純なスキームを用いる。
論文 参考訳(メタデータ) (2021-02-24T14:47:09Z) - Fast and differentiable simulation of driven quantum systems [58.720142291102135]
我々は、ダイソン展開に基づく半解析手法を導入し、標準数値法よりもはるかに高速に駆動量子系を時間発展させることができる。
回路QEDアーキテクチャにおけるトランスモン量子ビットを用いた2量子ゲートの最適化結果を示す。
論文 参考訳(メタデータ) (2020-12-16T21:43:38Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - Extending XACC for Quantum Optimal Control [70.19683407682642]
量子コンピューティングベンダーは、直接パルスレベルの量子制御のためのアプリケーションプログラミングをオープンにし始めている。
本稿では,XACCシステムレベルの量子古典ソフトウェアフレームワークの拡張について述べる。
この拡張により、デジタル量子回路表現を等価なパルスシーケンスに変換することができる。
論文 参考訳(メタデータ) (2020-06-04T13:13:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。