論文の概要: Large Language Models as Instruments of Power: New Regimes of Autonomous Manipulation and Control
- arxiv url: http://arxiv.org/abs/2405.03813v1
- Date: Mon, 6 May 2024 19:52:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-08 18:04:44.963973
- Title: Large Language Models as Instruments of Power: New Regimes of Autonomous Manipulation and Control
- Title(参考訳): パワーインスツルメンツとしての大規模言語モデル:自律的な操作と制御の新しいレジーム
- Authors: Yaqub Chaudhary, Jonnie Penn,
- Abstract要約: 大規模言語モデル(LLM)は様々な修辞スタイルを再現し、幅広い感情を表現したテキストを生成する。
我々は,LSMの迅速かつ大半非規制導入によって可能となった,過小評価された社会的危害について考察する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) can reproduce a wide variety of rhetorical styles and generate text that expresses a broad spectrum of sentiments. This capacity, now available at low cost, makes them powerful tools for manipulation and control. In this paper, we consider a set of underestimated societal harms made possible by the rapid and largely unregulated adoption of LLMs. Rather than consider LLMs as isolated digital artefacts used to displace this or that area of work, we focus on the large-scale computational infrastructure upon which they are instrumentalised across domains. We begin with discussion on how LLMs may be used to both pollute and uniformize information environments and how these modalities may be leveraged as mechanisms of control. We then draw attention to several areas of emerging research, each of which compounds the capabilities of LLMs as instruments of power. These include (i) persuasion through the real-time design of choice architectures in conversational interfaces (e.g., via "AI personas"), (ii) the use of LLM-agents as computational models of human agents (e.g., "silicon subjects"), (iii) the use of LLM-agents as computational models of human agent populations (e.g., "silicon societies") and finally, (iv) the combination of LLMs with reinforcement learning to produce controllable and steerable strategic dialogue models. We draw these strands together to discuss how these areas may be combined to build LLM-based systems that serve as powerful instruments of individual, social and political control via the simulation and disingenuous "prediction" of human behaviour, intent, and action.
- Abstract(参考訳): 大規模言語モデル(LLM)は様々な修辞スタイルを再現し、幅広い感情を表現したテキストを生成する。
この容量は現在低コストで利用可能であり、操作と制御のための強力なツールとなっている。
本稿では,LLMの迅速かつ大半非規制導入によって可能となった,過小評価された社会的危害について考察する。
LLMを独立したデジタルアーティファクトとして、あるいはそれに代わる作業領域として考えるのではなく、ドメイン間で計測される大規模計算基盤に焦点を当てる。
まず,LLMが情報環境の汚染と均一化の両方にどのように利用されるのか,制御機構としてどのように活用されるのかについて議論する。
次に,LLMをパワーの道具として持つ能力を組み合わせた新興研究のいくつかの分野に注目した。
以下を含む。
(i)会話インタフェースにおける選択アーキテクチャのリアルタイム設計による説得(例:「AIペルソナ」を通して)
(II)人為的エージェントの計算モデルとしてのLCMエージェントの使用(例えば「シリコン」科目)
三 人間のエージェント集団(例えば「シリコン社会」)の計算モデルとしてのLDMエージェントの使用、そして最後に
(4)LLMと強化学習を組み合わせることで,制御可能な戦略対話モデルを構築した。
これらの領域がどのように組み合わさって、人間の行動、意図、行動の非行な「予測」を通じて、個人、社会的、政治的制御の強力な手段として機能するLLMベースのシステムを構築するかについて議論する。
関連論文リスト
- MALMM: Multi-Agent Large Language Models for Zero-Shot Robotics Manipulation [52.739500459903724]
大規模言語モデル(LLM)は、ロボティクスの操作やナビゲーションなど、さまざまな領域にまたがる優れた計画能力を示している。
特殊なLLMエージェント間で高レベル計画および低レベル制御コード生成を分散する新しいマルチエージェントLLMフレームワークを提案する。
長軸タスクを含む9つのRLBenchタスクに対するアプローチを評価し、ゼロショット環境でロボット操作を解く能力を実証した。
論文 参考訳(メタデータ) (2024-11-26T17:53:44Z) - Large Language Models for Base Station Siting: Intelligent Deployment based on Prompt or Agent [62.16747639440893]
大規模言語モデル(LLM)とその関連技術は、特に迅速な工学とエージェント工学の領域において進歩している。
このアプローチは、人間の経験と知識をこれらの洗練されたLLMに注入するために、巧妙なプロンプトの戦略的利用を必要とする。
この統合は、サービスとしての人工知能(AI)と、より容易なAIの将来のパラダイムを表している。
論文 参考訳(メタデータ) (2024-08-07T08:43:32Z) - Harnessing the power of LLMs for normative reasoning in MASs [3.1796285054362605]
大きな言語モデル(LLM)は、標準に対してリッチで表現力豊かな語彙を提供する。
LLMはノルム発見、規範的推論、意思決定といった様々なタスクを実行できる。
本研究の目的は,MAS,NLP,LLM研究者の協力を得て,規範的エージェントの分野を推し進めることである。
論文 参考訳(メタデータ) (2024-03-25T08:09:01Z) - LLMArena: Assessing Capabilities of Large Language Models in Dynamic
Multi-Agent Environments [35.926581910260076]
マルチエージェント動的環境における大規模言語モデルの能力を評価するためのフレームワークであるLLMArenaを紹介する。
LLArenaはTrueskillスコアを使用して、空間推論、戦略的計画、数値推論、リスク評価、コミュニケーション、相手モデリング、チームコラボレーションなど、LLMエージェントの重要な能力を評価する。
我々は、LLMの規模や種類によって、広範囲にわたる実験と人的評価を行い、LLMは、完全に自律的なエージェントへと発展する上で、依然として重要な道のりを歩んでいることを示す。
論文 参考訳(メタデータ) (2024-02-26T11:31:48Z) - Rethinking Interpretability in the Era of Large Language Models [76.1947554386879]
大規模言語モデル(LLM)は、幅広いタスクにまたがる顕著な機能を示している。
自然言語で説明できる能力により、LLMは人間に与えられるパターンのスケールと複雑さを拡大することができる。
これらの新しい機能は、幻覚的な説明や膨大な計算コストなど、新しい課題を提起する。
論文 参考訳(メタデータ) (2024-01-30T17:38:54Z) - LMRL Gym: Benchmarks for Multi-Turn Reinforcement Learning with Language
Models [56.25156596019168]
本稿では,LMRL-Gymベンチマークを用いて,大規模言語モデル(LLM)のマルチターンRLの評価を行う。
我々のベンチマークは8つの異なる言語タスクで構成されており、複数ラウンドの言語相互作用が必要であり、オープンエンド対話やテキストゲームにおける様々なタスクをカバーする。
論文 参考訳(メタデータ) (2023-11-30T03:59:31Z) - Large Language Models as Subpopulation Representative Models: A Review [5.439020425819001]
大言語モデル(LLM)は、サブポピュレーション代表モデル(SRM)を推定するために用いられる。
LLMは、人口統計、地理的、政治的セグメント間の世論を測る代替的あるいは補完的な手段を提供することができる。
論文 参考訳(メタデータ) (2023-10-27T04:31:27Z) - Let Models Speak Ciphers: Multiagent Debate through Embeddings [84.20336971784495]
この問題を解決するためにCIPHER(Communicative Inter-Model Protocol Through Embedding Representation)を導入する。
自然言語から逸脱することで、CIPHERはモデルの重みを変更することなく、より広い範囲の情報を符号化する利点を提供する。
このことは、LLM間の通信における代替の"言語"としての埋め込みの優越性と堅牢性を示している。
論文 参考訳(メタデータ) (2023-10-10T03:06:38Z) - LanguageMPC: Large Language Models as Decision Makers for Autonomous
Driving [87.1164964709168]
この作業では、複雑な自律運転シナリオの意思決定コンポーネントとして、Large Language Models(LLM)を採用している。
大規模実験により,提案手法は単車載タスクのベースラインアプローチを一貫して超えるだけでなく,複数車載コーディネートにおいても複雑な運転動作の処理にも有効であることが示された。
論文 参考訳(メタデータ) (2023-10-04T17:59:49Z) - Large Language Models Humanize Technology [6.127963013089406]
大規模言語モデル(LLM)は、ここ数ヶ月、数週間で急速に進歩している。
これは、これらのモデルを人的価値と整合させること、労働市場への影響、そして規制の必要性に対する懸念を引き起こした。
LLMは、従来の技術よりも、より効果的にテクノロジーを人為化する創発的な能力を示すと我々は主張する。
論文 参考訳(メタデータ) (2023-05-09T16:05:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。