論文の概要: NeurDB: An AI-powered Autonomous Data System
- arxiv url: http://arxiv.org/abs/2405.03924v1
- Date: Tue, 7 May 2024 00:51:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-08 15:48:10.743680
- Title: NeurDB: An AI-powered Autonomous Data System
- Title(参考訳): NeurDB: AIを活用した自律型データシステム
- Authors: Beng Chin Ooi, Shaofeng Cai, Gang Chen, Kian Lee Tan, Yuncheng Wu, Xiaokui Xiao, Naili Xing, Cong Yue, Lingze Zeng, Meihui Zhang, Zhanhao Zhao,
- Abstract要約: 我々は,AI設計を各主要システムコンポーネントに完全に取り入れるように設計された次世代データシステムであるNeurDBを紹介する。
我々はNeurDBの概念的およびアーキテクチャ的概要を概説し、その設計選択と重要なコンポーネントについて議論し、その現況と今後の計画について報告する。
- 参考スコア(独自算出の注目度): 33.337028017596886
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the wake of rapid advancements in artificial intelligence (AI), we stand on the brink of a transformative leap in data systems. The imminent fusion of AI and DB (AIxDB) promises a new generation of data systems, which will relieve the burden on end-users across all industry sectors by featuring AI-enhanced functionalities, such as personalized and automated in-database AI-powered analytics, self-driving capabilities for improved system performance, etc. In this paper, we explore the evolution of data systems with a focus on deepening the fusion of AI and DB. We present NeurDB, our next-generation data system designed to fully embrace AI design in each major system component and provide in-database AI-powered analytics. We outline the conceptual and architectural overview of NeurDB, discuss its design choices and key components, and report its current development and future plan.
- Abstract(参考訳): 人工知能(AI)の急速な進歩を受けて、私たちはデータシステムの変革的な飛躍の瀬戸際に立つ。
AIとDB(AIxDB)の急激な融合により、すべての業界におけるエンドユーザの負担を軽減し、パーソナライズされ、自動化されたデータベース内AIによる分析、システムパフォーマンス向上のための自動運転機能など、AIを強化した機能を備えている。
本稿では,AIとDBの融合の深化に着目し,データシステムの進化を考察する。
私たちはNeurDBを紹介します。NeurDBは、主要なシステムコンポーネントにAI設計を完全に取り入れ、データベース内AIによる分析を提供するように設計された次世代データシステムです。
我々はNeurDBの概念的およびアーキテクチャ的概要を概説し、その設計選択と重要なコンポーネントについて議論し、その現況と今後の計画について報告する。
関連論文リスト
- NeurDB: On the Design and Implementation of an AI-powered Autonomous Database [27.13518136879994]
本稿では,AIによる自律データベースNeurDBを紹介する。
NeurDBは、データとワークロードのドリフトへの適応性を備えた、AIとデータベースの融合をさらに深める。
実証的な評価によると、NeurDBはAI分析タスクの管理において、既存のソリューションを大幅に上回っている。
論文 参考訳(メタデータ) (2024-08-06T07:48:51Z) - Operating System And Artificial Intelligence: A Systematic Review [17.256378758253437]
我々は、AI駆動のツールがOSのパフォーマンス、セキュリティ、効率をいかに向上させるかを検討する一方、OSの進歩はより洗練されたAIアプリケーションを促進する。
メモリ管理やプロセススケジューリング,侵入検出など,OSの機能最適化に使用されるさまざまなAI技術を分析した。
我々はIntelligent OSの有望な展望を探求し、革新的なOSアーキテクチャがいかに画期的な機会の道を開くかだけでなく、AIがこれらの次世代OSの発展にどのように貢献するかについても検討する。
論文 参考訳(メタデータ) (2024-07-19T05:29:34Z) - Generative AI Agent for Next-Generation MIMO Design: Fundamentals, Challenges, and Vision [76.4345564864002]
次世代の多重入力多重出力(MIMO)はインテリジェントでスケーラブルであることが期待される。
本稿では、カスタマイズされた特殊コンテンツを生成することができる生成型AIエージェントの概念を提案する。
本稿では、生成AIエージェントをパフォーマンス分析に活用することの有効性を示す2つの説得力のあるケーススタディを示す。
論文 参考訳(メタデータ) (2024-04-13T02:39:36Z) - Open-sourced Data Ecosystem in Autonomous Driving: the Present and Future [130.87142103774752]
このレビューは、70以上のオープンソースの自動運転データセットを体系的に評価する。
高品質なデータセットの作成の基礎となる原則など、さまざまな側面に関する洞察を提供する。
また、解決を保障する科学的、技術的課題も検討している。
論文 参考訳(メタデータ) (2023-12-06T10:46:53Z) - Data-centric Artificial Intelligence: A Survey [47.24049907785989]
近年、AIにおけるデータの役割は大幅に拡大し、データ中心AIという新たな概念が生まれた。
本稿では,データ中心型AIの必要性について論じ,続いて3つの一般的なデータ中心型目標の全体像を考察する。
これは、データライフサイクルのさまざまな段階にわたるタスクのグローバルなビューを提供する、初めての総合的な調査である、と私たちは信じています。
論文 参考訳(メタデータ) (2023-03-17T17:44:56Z) - Data-centric AI: Perspectives and Challenges [51.70828802140165]
データ中心AI(DCAI)は、モデル進歩からデータ品質と信頼性の確保への根本的なシフトを提唱している。
データ開発、推論データ開発、データメンテナンスの3つの一般的なミッションをまとめます。
論文 参考訳(メタデータ) (2023-01-12T05:28:59Z) - Data-Centric Artificial Intelligence [2.5874041837241304]
データ中心の人工知能(データ中心のAI)は、効率的で効率的なAIベースのシステムを構築する上で、データの体系的な設計とエンジニアリングが不可欠であることを強調する新しいパラダイムである。
関連する用語を定義し、データ中心のパラダイムとモデル中心のパラダイムを対比するための重要な特徴を提供し、データ中心のAIのためのフレームワークを導入します。
論文 参考訳(メタデータ) (2022-12-22T16:41:03Z) - The Principles of Data-Centric AI (DCAI) [9.211953610948862]
新たな概念としてのデータ中心型AI(DCAI)は、データ、その品質、ダイナミズムを最前線にもたらす。
この記事では、DCAIの基礎を概説するために、データ中心の視点と概念をまとめます。
論文 参考訳(メタデータ) (2022-11-26T16:43:40Z) - Distributed and Democratized Learning: Philosophy and Research
Challenges [80.39805582015133]
民主化学習(Dem-AI)という新しいデザイン哲学を提案する。
ヒトの社会的グループに触発され、提案されたDem-AIシステムの学習エージェントの専門グループは階層構造で自己組織化され、より効率的に学習タスクを遂行する。
本稿では,様々な学際分野に触発された未来のDem-AIシステムを実現するためのガイドラインとして,参照設計を提案する。
論文 参考訳(メタデータ) (2020-03-18T08:45:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。