論文の概要: High Energy Density Radiative Transfer in the Diffusion Regime with Fourier Neural Operators
- arxiv url: http://arxiv.org/abs/2405.04003v1
- Date: Tue, 7 May 2024 04:44:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-08 15:28:42.092433
- Title: High Energy Density Radiative Transfer in the Diffusion Regime with Fourier Neural Operators
- Title(参考訳): フーリエニューラル演算子を用いた拡散レジームにおける高エネルギー密度放射移動
- Authors: Joseph Farmer, Ethan Smith, William Bennett, Ryan McClarren,
- Abstract要約: フーリエニューラル演算子(FNO)を用いたマーシャック波のモデル化手法を提案する。
本研究では,(1)ハマー・アンド・ローゼン(2003)による広く用いられている解析モデルに基づく解近似への駆動条件と材料特性のマッピングを学習するベースモデルと,(2)より正確な数値解へのマッピングを学習して解析近似の不正確さを補正するモデルである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Radiative heat transfer is a fundamental process in high energy density physics and inertial fusion. Accurately predicting the behavior of Marshak waves across a wide range of material properties and drive conditions is crucial for design and analysis of these systems. Conventional numerical solvers and analytical approximations often face challenges in terms of accuracy and computational efficiency. In this work, we propose a novel approach to model Marshak waves using Fourier Neural Operators (FNO). We develop two FNO-based models: (1) a base model that learns the mapping between the drive condition and material properties to a solution approximation based on the widely used analytic model by Hammer & Rosen (2003), and (2) a model that corrects the inaccuracies of the analytic approximation by learning the mapping to a more accurate numerical solution. Our results demonstrate the strong generalization capabilities of the FNOs and show significant improvements in prediction accuracy compared to the base analytic model.
- Abstract(参考訳): 放射熱伝達は高エネルギー密度物理学と慣性融合の基本的な過程である。
マーシャク波の挙動を幅広い材料特性と駆動条件で正確に予測することは、これらのシステムの設計と解析に不可欠である。
従来の数値解法と解析近似は、精度と計算効率の点でしばしば課題に直面している。
本研究では,フーリエニューラル演算子(FNO)を用いたマーシャック波のモデル化手法を提案する。
本研究では,(1)ハマー・アンド・ローゼン(2003)による広く用いられている解析モデルに基づく解近似への駆動条件と材料特性のマッピングを学習するベースモデルと,(2)より正確な数値解へのマッピングを学習して解析近似の不正確さを補正するモデルである。
その結果、FNOの強い一般化能力を示し、ベース解析モデルと比較して予測精度が大幅に向上した。
関連論文リスト
- Flow matching achieves minimax optimal convergence [50.38891696297888]
フローマッチング (FM) は, シミュレーションのない生成モデルとして注目されている。
本稿では、分布差の尺度である$p$-ワッサーシュタイン距離の観点から、FMの収束特性について論じる。
FM が 1 leq p leq 2$ で minmax の最適収束率を達成することを証明し、FM が拡散モデルに匹敵する収束率に到達できるという最初の理論的証拠を提示する。
論文 参考訳(メタデータ) (2024-05-31T14:54:51Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - How Much is Enough? A Study on Diffusion Times in Score-based Generative
Models [76.76860707897413]
現在のベストプラクティスは、フォワードダイナミクスが既知の単純なノイズ分布に十分に近づくことを確実にするために大きなTを提唱している。
本稿では, 理想とシミュレーションされたフォワードダイナミクスのギャップを埋めるために補助モデルを用いて, 標準的な逆拡散過程を導出する方法について述べる。
論文 参考訳(メタデータ) (2022-06-10T15:09:46Z) - Evaluating the Adversarial Robustness for Fourier Neural Operators [78.36413169647408]
フーリエ・ニューラル・オペレータ(FNO)は、ゼロショット超解像で乱流をシミュレートした最初の人物である。
我々はノルム有界データ入力摂動に基づくFNOの逆例を生成する。
以上の結果から,モデルの強靭性は摂動レベルの増加とともに急速に低下することが明らかとなった。
論文 参考訳(メタデータ) (2022-04-08T19:19:42Z) - Bayesian Calibration of imperfect computer models using Physics-informed
priors [0.0]
本稿では,計算機モデルの物理パラメータの不確かさを定量化するのに適した,計算効率の良いデータ駆動フレームワークを提案する。
我々はこれを完全にベイズ的枠組みに拡張し、物理パラメータの不確かさとモデル予測の定量化を可能にした。
この研究は、高血圧の個人治療のための心臓の血行動態の解釈可能なパラメータの必要性によって動機付けられている。
論文 参考訳(メタデータ) (2022-01-17T15:16:26Z) - Physics-informed CoKriging model of a redox flow battery [68.8204255655161]
レドックスフロー電池(RFB)は、大量のエネルギーを安価かつ効率的に貯蔵する機能を提供する。
RFBの充電曲線の高速かつ正確なモデルが必要であり、バッテリ容量と性能が向上する可能性がある。
RFBの電荷分配曲線を予測する多相モデルを構築した。
論文 参考訳(メタデータ) (2021-06-17T00:49:55Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
実験観測に基づくモデルのパラメータを推定することは、科学的方法の中心である。
特に困難な設定は、モデルが強く不確定であるとき、すなわち、パラメータの異なるセットが同一の観測をもたらすときである。
本稿では,グローバルパラメータを共有する観測の補助的セットによって伝達される付加情報を利用して,その不確定性を破る手法を提案する。
論文 参考訳(メタデータ) (2021-02-12T12:23:13Z) - Modeling Stochastic Microscopic Traffic Behaviors: a Physics Regularized
Gaussian Process Approach [1.6242924916178285]
本研究では,実世界のランダム性を捉え,誤差を計測できる微視的交通モデルを提案する。
提案フレームワークの特長の一つは,自動車追従行動と車線変更行動の両方を1つのモデルで捉える能力である。
論文 参考訳(メタデータ) (2020-07-17T06:03:32Z) - Real-Time Model Calibration with Deep Reinforcement Learning [4.707841918805165]
本稿では,強化学習に基づくモデルパラメータ推定のための新しいフレームワークを提案する。
提案手法を2つのモデルベース診断試験ケースで実証し, 評価した。
論文 参考訳(メタデータ) (2020-06-07T00:11:42Z) - Modeling System Dynamics with Physics-Informed Neural Networks Based on
Lagrangian Mechanics [3.214927790437842]
第一原則の手法は高いバイアスに悩まされるが、データ駆動モデリングは高いばらつきを持つ傾向がある。
本稿では,2つのモデリング手法を組み合わせて上記の問題を解くハイブリッドモデルであるPINODEについて述べる。
本研究の目的は,機械系のモデルベース制御とシステム同定である。
論文 参考訳(メタデータ) (2020-05-29T15:10:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。