Bidirectional Adversarial Autoencoders for the design of Plasmonic Metasurfaces
- URL: http://arxiv.org/abs/2405.04056v1
- Date: Tue, 7 May 2024 06:57:42 GMT
- Title: Bidirectional Adversarial Autoencoders for the design of Plasmonic Metasurfaces
- Authors: Yuansan Liu, Jeygopi Panisilvam, Peter Dower, Sejeong Kim, James Bailey,
- Abstract summary: Deep Learning has been a critical part of designing inverse design methods that are computationally efficient and accurate.
One fundamental challenge of these systems is their ability to represent nonlinear relationships between sets of data that have different dimensionalities.
Existing design methods often implement a conditional Generative Adversarial Network in order to solve this problem, but in many cases the solution is unable to generate structures that provide multiple peaks when validated.
It is demonstrated that in response to the target spectrum, the Bidirectionalluminescent Adversarial Autoencoder is able to generate structures that provide multiple peaks on several occasions.
- Score: 8.223940676615857
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep Learning has been a critical part of designing inverse design methods that are computationally efficient and accurate. An example of this is the design of photonic metasurfaces by using their photoluminescent spectrum as the input data to predict their topology. One fundamental challenge of these systems is their ability to represent nonlinear relationships between sets of data that have different dimensionalities. Existing design methods often implement a conditional Generative Adversarial Network in order to solve this problem, but in many cases the solution is unable to generate structures that provide multiple peaks when validated. It is demonstrated that in response to the target spectrum, the Bidirectional Adversarial Autoencoder is able to generate structures that provide multiple peaks on several occasions. As a result the proposed model represents an important advance towards the generation of nonlinear photonic metasurfaces that can be used in advanced metasurface design.
Related papers
- Geometry-Informed Neural Networks [15.27249535281444]
We introduce geometry-informed neural networks (GINNs)
GINNs are a framework for training shape-generative neural fields without data.
We apply GINNs to several validation problems and a realistic 3D engineering design problem.
arXiv Detail & Related papers (2024-02-21T18:50:12Z) - Compositional Generative Inverse Design [69.22782875567547]
Inverse design, where we seek to design input variables in order to optimize an underlying objective function, is an important problem.
We show that by instead optimizing over the learned energy function captured by the diffusion model, we can avoid such adversarial examples.
In an N-body interaction task and a challenging 2D multi-airfoil design task, we demonstrate that by composing the learned diffusion model at test time, our method allows us to design initial states and boundary shapes.
arXiv Detail & Related papers (2024-01-24T01:33:39Z) - Transfer learning-assisted inverse modeling in nanophotonics based on mixture density networks [0.840835093659811]
In this paper, we propose an inverse modeling method for nanophotonic structures based on a mixture density network model enhanced by transfer learning.
The proposed approach allows overcoming these limitations using transfer learning-based techniques, while preserving a high accuracy in the prediction capability of the design solutions given an optical response as an input.
arXiv Detail & Related papers (2024-01-21T09:03:30Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
Deep generative models have demonstrated successful applications in learning non-linear data distributions through a number of latent variables.
The nonlinearity of the generator implies that the latent space shows an unsatisfactory projection of the data space, which results in poor representation learning.
We show that geodesics and accurate computation can substantially improve the performance of deep generative models.
arXiv Detail & Related papers (2023-04-03T13:13:19Z) - PC-GANs: Progressive Compensation Generative Adversarial Networks for
Pan-sharpening [50.943080184828524]
We propose a novel two-step model for pan-sharpening that sharpens the MS image through the progressive compensation of the spatial and spectral information.
The whole model is composed of triple GANs, and based on the specific architecture, a joint compensation loss function is designed to enable the triple GANs to be trained simultaneously.
arXiv Detail & Related papers (2022-07-29T03:09:21Z) - Surface Vision Transformers: Attention-Based Modelling applied to
Cortical Analysis [8.20832544370228]
We introduce a domain-agnostic architecture to study any surface data projected onto a spherical manifold.
A vision transformer model encodes the sequence of patches via successive multi-head self-attention layers.
Experiments show that the SiT generally outperforms surface CNNs, while performing comparably on registered and unregistered data.
arXiv Detail & Related papers (2022-03-30T15:56:11Z) - An End-to-End Framework for Molecular Conformation Generation via
Bilevel Programming [71.82571553927619]
We propose an end-to-end solution for molecular conformation prediction called ConfVAE.
Specifically, the molecular graph is first encoded in a latent space, and then the 3D structures are generated by solving a principled bilevel optimization program.
arXiv Detail & Related papers (2021-05-15T15:22:29Z) - Suppress and Balance: A Simple Gated Network for Salient Object
Detection [89.88222217065858]
We propose a simple gated network (GateNet) to solve both issues at once.
With the help of multilevel gate units, the valuable context information from the encoder can be optimally transmitted to the decoder.
In addition, we adopt the atrous spatial pyramid pooling based on the proposed "Fold" operation (Fold-ASPP) to accurately localize salient objects of various scales.
arXiv Detail & Related papers (2020-07-16T02:00:53Z) - Multifunctional Meta-Optic Systems: Inversely Designed with Artificial
Intelligence [1.076210145983805]
We present an artificial intelligence framework for designing multilayer meta-optic systems with multifunctional capabilities.
We demonstrate examples of a polarization-multiplexed dual-functional beam generator, a second order differentiator for all-optical computation, and a space-polarization-wavelength multiplexed hologram.
arXiv Detail & Related papers (2020-06-30T22:15:15Z) - Understanding Graph Neural Networks with Generalized Geometric
Scattering Transforms [67.88675386638043]
The scattering transform is a multilayered wavelet-based deep learning architecture that acts as a model of convolutional neural networks.
We introduce windowed and non-windowed geometric scattering transforms for graphs based upon a very general class of asymmetric wavelets.
We show that these asymmetric graph scattering transforms have many of the same theoretical guarantees as their symmetric counterparts.
arXiv Detail & Related papers (2019-11-14T17:23:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.