論文の概要: Scientific Machine Learning Seismology
- arxiv url: http://arxiv.org/abs/2409.18397v1
- Date: Fri, 27 Sep 2024 02:27:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-06 06:31:22.330472
- Title: Scientific Machine Learning Seismology
- Title(参考訳): 科学機械学習地震学
- Authors: Tomohisa Okazaki,
- Abstract要約: 科学機械学習(SciML)は、機械学習、特にディープラーニングと物理理論を統合し、複雑な自然現象を理解し予測する学際的な研究分野である。
PINNとニューラル演算子(NO)はSciMLの2つの一般的な方法である。
PINNの使用は、微分方程式の同時解、未決定系の推論、物理学に基づく正規化などの分野に拡大している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Scientific machine learning (SciML) is an interdisciplinary research field that integrates machine learning, particularly deep learning, with physics theory to understand and predict complex natural phenomena. By incorporating physical knowledge, SciML reduces the dependency on observational data, which is often limited in the natural sciences. In this article, the fundamental concepts of SciML, its applications in seismology, and prospects are described. Specifically, two popular methods are mainly discussed: physics-informed neural networks (PINNs) and neural operators (NOs). PINNs can address both forward and inverse problems by incorporating governing laws into the loss functions. The use of PINNs is expanding into areas such as simultaneous solutions of differential equations, inference in underdetermined systems, and regularization based on physics. These research directions would broaden the scope of deep learning in natural sciences. NOs are models designed for operator learning, which deals with relationships between infinite-dimensional spaces. NOs show promise in modeling the time evolution of complex systems based on observational or simulation data. Since large amounts of data are often required, combining NOs with physics-informed learning holds significant potential. Finally, SciML is considered from a broader perspective beyond deep learning: statistical (or mathematical) frameworks that integrate observational data with physical principles to model natural phenomena. In seismology, mathematically rigorous Bayesian statistics has been developed over the past decades, whereas more flexible and scalable deep learning has only emerged recently. Both approaches can be considered as part of SciML in a broad sense. Theoretical and practical insights in both directions would advance SciML methodologies and thereby deepen our understanding of earthquake phenomena.
- Abstract(参考訳): 科学機械学習(SciML)は、機械学習、特にディープラーニングと物理理論を統合し、複雑な自然現象を理解し予測する学際的な研究分野である。
物理知識を取り入れることで、SciMLは自然科学において制限される観測データへの依存を減らす。
本稿では,SciMLの基本概念,その地震学への応用,今後の展望について述べる。
具体的には、物理インフォームドニューラルネットワーク(PINN)とニューラル演算子(NO)の2つの一般的な手法が主に議論されている。
PINNは、制御法則を損失関数に組み込むことで、前方および逆問題の両方に対処することができる。
PINNの使用は、微分方程式の同時解、未決定系の推論、物理学に基づく正規化などの分野に拡大している。
これらの研究の方向性は、自然科学における深層学習の範囲を広げることになる。
NOは、無限次元空間間の関係を扱う演算子学習用に設計されたモデルである。
観測データやシミュレーションデータに基づく複雑なシステムの時間進化をモデル化する上で、NOは有望であることを示す。
大量のデータを必要とすることが多いため、NOと物理インフォームドラーニングを組み合わせることは大きな可能性を秘めている。
最後に、SciMLは深層学習を超えて、観測データを物理原理と統合して自然現象をモデル化する統計的(または数学的)フレームワークであると考えられている。
地震学において、数学的に厳密なベイズ統計は過去数十年にわたって発展してきたが、より柔軟でスケーラブルな深層学習は近年になって現れたばかりである。
どちらのアプローチも、広い意味ではSciMLの一部と見なすことができる。
両方向の理論的および実践的な洞察は、SciML方法論を前進させ、地震現象の理解を深める。
関連論文リスト
- LLM and Simulation as Bilevel Optimizers: A New Paradigm to Advance Physical Scientific Discovery [141.39722070734737]
本稿では,大規模言語モデルの知識駆動型抽象推論能力をシミュレーションの計算力で強化することを提案する。
本稿では,2段階最適化フレームワークであるSGA(Scientific Generative Agent)を紹介する。
法発見と分子設計における枠組みの有効性を実証するための実験を行った。
論文 参考訳(メタデータ) (2024-05-16T03:04:10Z) - Opportunities for machine learning in scientific discovery [16.526872562935463]
我々は、科学コミュニティが科学的な発見を達成するために機械学習技術をどのように活用できるかをレビューする。
課題は残るが、MLの原則的利用は基本的な科学的発見のための新たな道を開く。
論文 参考訳(メタデータ) (2024-05-07T09:58:02Z) - Understanding Biology in the Age of Artificial Intelligence [4.299566787216408]
現代生命科学の研究は、生物システムをモデル化するための人工知能のアプローチにますます依存している。
機械学習(ML)モデルは、大規模で複雑なデータセットのパターンを特定するのに有用であるが、生物学におけるその広範な応用は、従来の科学的調査方法から大きく逸脱している。
ここでは,生物現象をモデル化し,科学的知識を進化させるために,MLシステムの設計と応用を導く一般的な原理を同定する。
論文 参考訳(メタデータ) (2024-03-06T23:20:34Z) - A Review of Neuroscience-Inspired Machine Learning [58.72729525961739]
バイオプルーシブル・クレジット・アサインメントは、事実上あらゆる学習条件と互換性があり、エネルギー効率が高い。
本稿では,人工ニューラルネットワークにおける信用代入の生体評価可能なルールをモデル化する,いくつかの重要なアルゴリズムについて検討する。
我々は,このようなアルゴリズムを実用アプリケーションでより有用にするためには,今後の課題に対処する必要があることを論じる。
論文 参考訳(メタデータ) (2024-02-16T18:05:09Z) - Large Language Models for Scientific Synthesis, Inference and
Explanation [56.41963802804953]
大規模言語モデルがどのように科学的合成、推論、説明を行うことができるかを示す。
我々は,この「知識」を科学的文献から合成することで,大きな言語モデルによって強化できることを示す。
このアプローチは、大きな言語モデルが機械学習システムの予測を説明することができるというさらなる利点を持っている。
論文 参考訳(メタデータ) (2023-10-12T02:17:59Z) - Learning force laws in many-body systems [2.185577978806931]
我々は、機械学習モデルが、ほこりっぽいプラズマの力の法則を推測する方法を示す。
このモデルは固有対称性、非恒等粒子を考慮し、正確な精度で粒子間の効果的な非相互力を学ぶ。
実験データから新しい物理を識別する能力は、MLを利用したアプローチが、多体システムにおける新しい科学的発見経路をどのように導くかを示す。
論文 参考訳(メタデータ) (2023-10-08T20:12:34Z) - Deep learning applied to computational mechanics: A comprehensive
review, state of the art, and the classics [77.34726150561087]
人工知能,特に深層学習(DL)の最近の進歩を概観する。
ハイブリッドおよび純粋機械学習(ML)の手法について論じる。
AIの歴史と限界は、特に古典の誤解や誤解を指摘し、議論され、議論される。
論文 参考訳(メタデータ) (2022-12-18T02:03:00Z) - Scalable algorithms for physics-informed neural and graph networks [0.6882042556551611]
物理インフォームド機械学習(PIML)は、複雑な物理的および生物学的システムをシミュレートするための有望な新しいアプローチとして登場した。
PIMLでは、物理法則を適用し、時空領域のランダムな点で評価することで得られる追加情報から、そのようなネットワークを訓練することができる。
本稿では、主にフィードフォワードニューラルネットワークと自動微分に基づく物理情報ニューラルネットワーク(PINN)を用いて、物理を機械学習に組み込む一般的なトレンドについて概説する。
論文 参考訳(メタデータ) (2022-05-16T15:46:11Z) - Learning Generalized Causal Structure in Time-series [0.0]
我々は最近提案された「ニューロカオス」特徴学習技術(ChaosFEX特徴抽出器)に基づく機械学習パイプラインを開発する。
本研究では,最近提案された'neurochaos'特徴学習技術(ChaosFEX特徴抽出器)に基づく機械学習パイプラインを開発する。
論文 参考訳(メタデータ) (2021-12-06T14:48:13Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
科学機械学習における最近の研究は、いわゆる物理情報ニューラルネットワーク(PINN)モデルを開発した。
既存のPINN方法論は比較的自明な問題に対して優れたモデルを学ぶことができるが、単純なPDEであっても、関連する物理現象を学習するのに失敗する可能性があることを実証する。
これらの障害モードは,NNアーキテクチャの表現力の欠如によるものではなく,PINNのセットアップによって損失状況の最適化が極めて困難であることを示す。
論文 参考訳(メタデータ) (2021-09-02T16:06:45Z) - Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges [50.22269760171131]
過去10年間、データサイエンスと機械学習の実験的な革命が、ディープラーニングの手法によって生まれた。
このテキストは、統一幾何学的原理によって事前に定義された規則性を公開することに関するものである。
CNN、RNN、GNN、Transformersなど、最も成功したニューラルネットワークアーキテクチャを研究するための一般的な数学的フレームワークを提供する。
論文 参考訳(メタデータ) (2021-04-27T21:09:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。