論文の概要: Semantic API Alignment: Linking High-level User Goals to APIs
- arxiv url: http://arxiv.org/abs/2405.04236v1
- Date: Tue, 7 May 2024 11:54:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-08 14:20:03.707173
- Title: Semantic API Alignment: Linking High-level User Goals to APIs
- Title(参考訳): Semantic APIアライメント: ハイレベルなユーザ目標をAPIにリンクする
- Authors: Robert Feldt, Riccardo Coppola,
- Abstract要約: 既存のライブラリを使った要件エンジニアリングから実装まで,複数のステップにまたがるビジョンを提示する。
このアプローチは、セマンティックAPIアライメント(SEAL)と呼ばれ、ユーザの高レベルな目標と1つ以上のAPIの特定の機能とのギャップを埋めることを目的としています。
- 参考スコア(独自算出の注目度): 6.494714497852088
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) are becoming key in automating and assisting various software development tasks, including text-based tasks in requirements engineering but also in coding. Typically, these models are used to automate small portions of existing tasks, but we present a broader vision to span multiple steps from requirements engineering to implementation using existing libraries. This approach, which we call Semantic API Alignment (SEAL), aims to bridge the gap between a user's high-level goals and the specific functions of one or more APIs. In this position paper, we propose a system architecture where a set of LLM-powered ``agents'' match such high-level objectives with appropriate API calls. This system could facilitate automated programming by finding matching links or, alternatively, explaining mismatches to guide manual intervention or further development. As an initial pilot, our paper demonstrates this concept by applying LLMs to Goal-Oriented Requirements Engineering (GORE), via sub-goal analysis, for aligning with REST API specifications, specifically through a case study involving a GitHub statistics API. We discuss the potential of our approach to enhance complex tasks in software development and requirements engineering and outline future directions for research.
- Abstract(参考訳): 大きな言語モデル(LLM)は、要求工学だけでなくコーディングにおいても、テキストベースのタスクを含む様々なソフトウェア開発タスクの自動化と支援において重要になっている。
通常、これらのモデルは既存のタスクの小さな部分を自動化するために使用されますが、要求工学から既存のライブラリを使った実装まで、様々なステップにまたがる幅広いビジョンを示します。
このアプローチは、セマンティックAPIアライメント(SEAL)と呼ばれ、ユーザの高レベルな目標と1つ以上のAPIの特定の機能とのギャップを埋めることを目的としています。
本稿では,LLM方式の `<agents'' の集合が,そのような高レベルな目的と適切なAPI呼び出しとを一致させるシステムアーキテクチャを提案する。
このシステムは、マッチングリンクを見つけるか、あるいは手動による介入やさらなる開発を導くためにミスマッチを説明することで、自動プログラミングを容易にすることができる。
最初のパイロットとして、当社の論文は、REST API仕様、特にGitHub統計APIを含むケーススタディと整合するサブゴール分析を通じて、GORE(Goal-Oriented Requirements Engineering)にLLMを適用することで、このコンセプトを実証しています。
ソフトウェア開発と要件工学における複雑なタスクを強化するアプローチの可能性について議論し、研究の今後の方向性について概説する。
関連論文リスト
- Creating an LLM-based AI-agent: A high-level methodology towards enhancing LLMs with APIs [0.0]
大規模言語モデル(LLM)は、工学と科学の様々な側面に革命をもたらした。
この論文は総合的なガイドとして機能し、アプリケーションプログラミングインタフェース(API)を活用する能力を備えたLLMの強化のための多面的アプローチを解明する。
本稿では,Hugging Faceコミュニティの小さなモデルを用いて,携帯端末の機能を活用したオンデバイスアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-12-17T14:14:04Z) - ExploraCoder: Advancing code generation for multiple unseen APIs via planning and chained exploration [70.26807758443675]
ExploraCoderはトレーニング不要のフレームワークで、大規模な言語モデルにコードソリューションで見えないAPIを呼び出す権限を与える。
ExploraCoderは,事前のAPI知識を欠いたモデルのパフォーマンスを著しく向上させ,NAGアプローチの11.24%,pass@10の事前トレーニングメソッドの14.07%を絶対的に向上させることを示す。
論文 参考訳(メタデータ) (2024-12-06T19:00:15Z) - Demystifying Application Programming Interfaces (APIs): Unlocking the Power of Large Language Models and Other Web-based AI Services in Social Work Research [0.0]
アプリケーションプログラミングインタフェース(API)は、大規模言語モデル(LLM)やその他のAIサービスといった高度な技術を活用することを目的とした、ソーシャルワーク研究者にとって不可欠なツールである。
本稿では、APIをデミステレーションし、研究方法論をいかに拡張できるかを説明する。
実際のコード例は、構造化されていないテキストからデータを抽出するなど、LLMが特別なサービスにアクセスするためのAPIコードを生成する方法を示している。
論文 参考訳(メタデータ) (2024-10-26T16:07:12Z) - A Systematic Evaluation of Large Code Models in API Suggestion: When, Which, and How [53.65636914757381]
API提案は、現代のソフトウェア開発において重要なタスクである。
大規模コードモデル(LCM)の最近の進歩は、API提案タスクにおいて有望であることを示している。
論文 参考訳(メタデータ) (2024-09-20T03:12:35Z) - Octopus: On-device language model for function calling of software APIs [9.78611123915888]
大きな言語モデル(LLM)は、高度なテキスト処理と生成能力のために重要な役割を果たす。
本研究は,ソフトウェアAPIの起動において,デバイス上でのLCMを活用するための新たな戦略を提案する。
論文 参考訳(メタデータ) (2024-04-02T01:29:28Z) - API-BLEND: A Comprehensive Corpora for Training and Benchmarking API LLMs [28.840207102132286]
既存のデータセットを特定し、キュレーションし、変換するタスクに重点を置いています。
ツール拡張LDMのトレーニングと体系的なテストを行うための大規模なコーパスであるAPI-BLENDを紹介する。
トレーニングとベンチマークの両方の目的で,API-BLENDデータセットの有用性を実証する。
論文 参考訳(メタデータ) (2024-02-23T18:30:49Z) - TaskBench: Benchmarking Large Language Models for Task Automation [82.2932794189585]
タスク自動化における大規模言語モデル(LLM)の機能を評価するためのフレームワークであるTaskBenchを紹介する。
具体的には、タスクの分解、ツールの選択、パラメータ予測を評価する。
提案手法は, 自動構築と厳密な人的検証を組み合わせることで, 人的評価との整合性を確保する。
論文 参考訳(メタデータ) (2023-11-30T18:02:44Z) - Enhancing API Documentation through BERTopic Modeling and Summarization [0.0]
本稿では、アプリケーションプログラミングインタフェース(API)ドキュメントの解釈の複雑さに焦点を当てる。
公式APIドキュメンテーションは、開発者にとって最も重要な情報ソースであるが、広くなり、ユーザフレンドリ性に欠けることが多い。
我々の新しいアプローチは、トピックモデリングと自然言語処理(NLP)にBERTopicの長所を利用して、APIドキュメントの要約を自動的に生成する。
論文 参考訳(メタデータ) (2023-08-17T15:57:12Z) - ToolLLM: Facilitating Large Language Models to Master 16000+ Real-world
APIs [104.37772295581088]
オープンソースの大規模言語モデル(LLM)、例えばLLaMAは、ツール使用能力に大きく制限されている。
データ構築、モデルトレーニング、評価を含む汎用ツールであるToolLLMを紹介する。
ツール使用のためのインストラクションチューニングフレームワークであるToolBenchを,ChatGPTを使って自動構築する。
論文 参考訳(メタデータ) (2023-07-31T15:56:53Z) - Instruct2Act: Mapping Multi-modality Instructions to Robotic Actions
with Large Language Model [63.66204449776262]
Instruct2Actは、ロボット操作タスクのシーケンシャルアクションにマルチモーダル命令をマッピングするフレームワークである。
我々のアプローチは、様々な命令のモダリティや入力タイプを調節する上で、調整可能で柔軟なものである。
我々のゼロショット法は、いくつかのタスクにおいて、最先端の学習ベースのポリシーよりも優れていた。
論文 参考訳(メタデータ) (2023-05-18T17:59:49Z) - TaskMatrix.AI: Completing Tasks by Connecting Foundation Models with
Millions of APIs [71.7495056818522]
私たちは、基礎モデルと数百万のAPIを結合してタスク補完を行う、新しいAIエコシステムとしてTaskMatrix.AIを紹介します。
このようなエコシステムを構築するためのビジョンを示し、それぞれの重要なコンポーネントを説明し、このビジョンの実現可能性と次に取り組むべき主な課題の両方を説明するために研究ケースを使用します。
論文 参考訳(メタデータ) (2023-03-29T03:30:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。