論文の概要: Enhancing the Efficiency and Accuracy of Underlying Asset Reviews in Structured Finance: The Application of Multi-agent Framework
- arxiv url: http://arxiv.org/abs/2405.04294v1
- Date: Tue, 7 May 2024 13:09:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-08 14:10:19.036434
- Title: Enhancing the Efficiency and Accuracy of Underlying Asset Reviews in Structured Finance: The Application of Multi-agent Framework
- Title(参考訳): 構造的ファイナンスにおけるアセットレビューの効率化と正確性:マルチエージェントフレームワークの適用
- Authors: Xiangpeng Wan, Haicheng Deng, Kai Zou, Shiqi Xu,
- Abstract要約: AIは、ローンアプリケーションと銀行のステートメント間の情報の検証を効果的に自動化できることを示します。
この研究は、手動エラーを最小限に抑え、デューディリジェンスを合理化するAIの可能性を強調し、財務文書分析とリスク管理におけるAIの幅広い応用を示唆している。
- 参考スコア(独自算出の注目度): 3.022596401099308
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Structured finance, which involves restructuring diverse assets into securities like MBS, ABS, and CDOs, enhances capital market efficiency but presents significant due diligence challenges. This study explores the integration of artificial intelligence (AI) with traditional asset review processes to improve efficiency and accuracy in structured finance. Using both open-sourced and close-sourced large language models (LLMs), we demonstrate that AI can automate the verification of information between loan applications and bank statements effectively. While close-sourced models such as GPT-4 show superior performance, open-sourced models like LLAMA3 offer a cost-effective alternative. Dual-agent systems further increase accuracy, though this comes with higher operational costs. This research highlights AI's potential to minimize manual errors and streamline due diligence, suggesting a broader application of AI in financial document analysis and risk management.
- Abstract(参考訳): 多様な資産をMBS、ABS、CDOなどの証券に再構成する構造金融は、資本市場の効率を高めるが、重大なデューデリジェンス課題を生じさせる。
本研究では、構造化金融の効率性と正確性を向上させるため、AIと従来の資産レビュープロセスの統合について検討する。
オープンソースとオープンソースの両方の大規模言語モデル(LLM)を用いて、AIがローンアプリケーションと銀行のステートメント間の情報の検証を効果的に自動化できることを実証する。
GPT-4のようなオープンソースモデルは優れた性能を示すが、LAMA3のようなオープンソースモデルはコスト効率の良い代替手段を提供する。
デュアルエージェントシステムはさらに精度を向上するが、これは高い運用コストが伴う。
この研究は、手動エラーを最小限に抑え、デューディリジェンスを合理化するAIの可能性を強調し、財務文書分析とリスク管理におけるAIの幅広い応用を示唆している。
関連論文リスト
- FinRobot: AI Agent for Equity Research and Valuation with Large Language Models [6.2474959166074955]
本稿では、エクイティリサーチに特化したAIエージェントフレームワークであるFinRobotについて述べる。
FinRobotはマルチエージェント・チェーン・オブ・シント(CoT)システムを採用し、定量分析と定性的分析を統合し、人間のアナリストの包括的な推論をエミュレートする。
CapitalCubeやWright Reportsのような既存の自動研究ツールとは異なり、FinRobotは大手ブローカー会社や基礎研究ベンダーと同等の洞察を提供する。
論文 参考訳(メタデータ) (2024-11-13T17:38:07Z) - Leveraging Fine-Tuned Language Models for Efficient and Accurate Smart Contract Auditing [5.65127016235615]
本稿では,スマートコントラクト監査において,より小型で微調整されたモデルを用いて,同等あるいは優れた結果が得られる可能性について検討する。
本稿では,スマートコントラクト監査のための費用対効果の高い特化モデルの開発を目的としたFTSmartAuditフレームワークを紹介する。
コントリビューションには,(1)データ準備,トレーニング,評価,継続的な学習を効率化するシングルタスク学習フレームワーク,(2)ドメイン固有知識蒸留を利用した堅牢なデータセット生成手法,(3)モデルの正確性と堅牢性を維持するための適応型学習戦略などが含まれている。
論文 参考訳(メタデータ) (2024-10-17T09:09:09Z) - Advancing Anomaly Detection: Non-Semantic Financial Data Encoding with LLMs [49.57641083688934]
本稿では,Large Language Models (LLM) 埋め込みを用いた財務データにおける異常検出の新しい手法を提案する。
実験により,LLMが異常検出に有用な情報をもたらし,モデルがベースラインを上回っていることが確認された。
論文 参考訳(メタデータ) (2024-06-05T20:19:09Z) - WESE: Weak Exploration to Strong Exploitation for LLM Agents [95.6720931773781]
本稿では,オープンワールド対話型タスクの解法において,LLMエージェントの強化を目的としたWeak Exploration to Strong Exploitation (WESE)を提案する。
WESEは、探究と搾取のプロセスを分離し、費用対効果の弱いエージェントを用いて世界的知識の探索を行う。
次に、獲得した知識を格納し、タスク関連知識を抽出する知識グラフベースの戦略を導入する。
論文 参考訳(メタデータ) (2024-04-11T03:31:54Z) - A machine learning workflow to address credit default prediction [0.44943951389724796]
信用デフォルト予測(CDP)は個人や企業の信用力を評価する上で重要な役割を果たす。
CDPを改善するためのワークフローベースのアプローチを提案する。これは、借り手が信用義務を負う確率を評価するタスクを指す。
論文 参考訳(メタデータ) (2024-03-06T15:30:41Z) - Explainable Automated Machine Learning for Credit Decisions: Enhancing
Human Artificial Intelligence Collaboration in Financial Engineering [0.0]
本稿では、金融工学領域における説明可能な自動機械学習(AutoML)の統合について検討する。
AutoMLは、クレジットスコアリングのための堅牢な機械学習モデルの開発を合理化する方法に重点を置いている。
この調査結果は、AI主導の金融決定の透明性と説明責任を改善する上で、説明可能なAutoMLの可能性を強調している。
論文 参考訳(メタデータ) (2024-02-06T08:47:16Z) - FinGPT: Instruction Tuning Benchmark for Open-Source Large Language
Models in Financial Datasets [9.714447724811842]
本稿では,オープンソースの大規模言語モデルに対して,インストラクションチューニングパラダイムに固有のアプローチを導入する。
私たちは、オープンソースのモデルの相互運用性に乗じて、シームレスで透過的な統合を確保します。
本稿では,エンドツーエンドのトレーニングとテストのためのベンチマーク手法を提案し,費用対効果を生かした。
論文 参考訳(メタデータ) (2023-10-07T12:52:58Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
オープン情報抽出(OIE)タスクは、構造化されていないテキストから構造化された事実を抽出することを目的としている。
一般的なタスク解決手段としてChatGPTのような大きな言語モデル(LLM)の可能性にもかかわらず、OIEタスクの最先端(教師付き)メソッドは遅れている。
論文 参考訳(メタデータ) (2023-09-07T01:35:24Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
ニュース見出しを用いて,ChatGPTのような大規模言語モデル(LLM)の株価変動を予測する能力について述べる。
我々は,情報容量制約,過小反応,制限対アビタージュ,LLMを組み込んだ理論モデルを構築した。
論文 参考訳(メタデータ) (2023-04-15T19:22:37Z) - Explanations of Machine Learning predictions: a mandatory step for its
application to Operational Processes [61.20223338508952]
信用リスクモデリングは重要な役割を果たす。
近年,機械学習や深層学習の手法が採用されている。
この分野における説明可能性問題に LIME 手法を適用することを提案する。
論文 参考訳(メタデータ) (2020-12-30T10:27:59Z) - Cost-Sensitive Portfolio Selection via Deep Reinforcement Learning [100.73223416589596]
深層強化学習を用いたコスト依存型ポートフォリオ選択手法を提案する。
具体的には、価格系列パターンと資産相関の両方を抽出するために、新しい2ストリームポートフォリオポリシーネットワークを考案した。
蓄積したリターンを最大化し、強化学習によるコストの両立を抑えるため、新たなコスト感受性報酬関数が開発された。
論文 参考訳(メタデータ) (2020-03-06T06:28:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。