Semi-Supervised Disease Classification based on Limited Medical Image Data
- URL: http://arxiv.org/abs/2405.04295v1
- Date: Tue, 7 May 2024 13:11:08 GMT
- Title: Semi-Supervised Disease Classification based on Limited Medical Image Data
- Authors: Yan Zhang, Chun Li, Zhaoxia Liu, Ming Li,
- Abstract summary: This paper introduces a novel generative model inspired by H"older divergence for semi-supervised disease classification.
We conduct experiments on five benchmark datasets commonly used in PU medical learning.
Our approach achieves state-of-the-art performance on all five disease classification benchmarks.
- Score: 9.633774896301436
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, significant progress has been made in the field of learning from positive and unlabeled examples (PU learning), particularly in the context of advancing image and text classification tasks. However, applying PU learning to semi-supervised disease classification remains a formidable challenge, primarily due to the limited availability of labeled medical images. In the realm of medical image-aided diagnosis algorithms, numerous theoretical and practical obstacles persist. The research on PU learning for medical image-assisted diagnosis holds substantial importance, as it aims to reduce the time spent by professional experts in classifying images. Unlike natural images, medical images are typically accompanied by a scarcity of annotated data, while an abundance of unlabeled cases exists. Addressing these challenges, this paper introduces a novel generative model inspired by H\"older divergence, specifically designed for semi-supervised disease classification using positive and unlabeled medical image data. In this paper, we present a comprehensive formulation of the problem and establish its theoretical feasibility through rigorous mathematical analysis. To evaluate the effectiveness of our proposed approach, we conduct extensive experiments on five benchmark datasets commonly used in PU medical learning: BreastMNIST, PneumoniaMNIST, BloodMNIST, OCTMNIST, and AMD. The experimental results clearly demonstrate the superiority of our method over existing approaches based on KL divergence. Notably, our approach achieves state-of-the-art performance on all five disease classification benchmarks. By addressing the limitations imposed by limited labeled data and harnessing the untapped potential of unlabeled medical images, our novel generative model presents a promising direction for enhancing semi-supervised disease classification in the field of medical image analysis.
Related papers
- Cross- and Intra-image Prototypical Learning for Multi-label Disease Diagnosis and Interpretation [15.303610605543746]
We present a novel Cross- and Intra-image Prototypical Learning framework, for accurate multi-label disease diagnosis and interpretation from medical images.
We propose a new two-level alignment-based regularisation strategy that effectively leverages consistent intra-image information to enhance interpretation robustness and predictive performance.
arXiv Detail & Related papers (2024-11-07T10:46:01Z) - FedMedICL: Towards Holistic Evaluation of Distribution Shifts in Federated Medical Imaging [68.6715007665896]
FedMedICL is a unified framework and benchmark to holistically evaluate federated medical imaging challenges.
We comprehensively evaluate several popular methods on six diverse medical imaging datasets.
We find that a simple batch balancing technique surpasses advanced methods in average performance across FedMedICL experiments.
arXiv Detail & Related papers (2024-07-11T19:12:23Z) - MedIAnomaly: A comparative study of anomaly detection in medical images [26.319602363581442]
Anomaly detection (AD) aims at detecting abnormal samples that deviate from the expected normal patterns.
Despite numerous methods for medical AD, we observe a lack of a fair and comprehensive evaluation.
This paper builds a benchmark with unified comparison.
arXiv Detail & Related papers (2024-04-06T06:18:11Z) - Optimizing Skin Lesion Classification via Multimodal Data and Auxiliary
Task Integration [54.76511683427566]
This research introduces a novel multimodal method for classifying skin lesions, integrating smartphone-captured images with essential clinical and demographic information.
A distinctive aspect of this method is the integration of an auxiliary task focused on super-resolution image prediction.
The experimental evaluations have been conducted using the PAD-UFES20 dataset, applying various deep-learning architectures.
arXiv Detail & Related papers (2024-02-16T05:16:20Z) - MedFMC: A Real-world Dataset and Benchmark For Foundation Model
Adaptation in Medical Image Classification [41.16626194300303]
Foundation models, often pre-trained with large-scale data, have achieved paramount success in jump-starting various vision and language applications.
Recent advances further enable adapting foundation models in downstream tasks efficiently using only a few training samples.
Yet, the application of such learning paradigms in medical image analysis remains scarce due to the shortage of publicly accessible data and benchmarks.
arXiv Detail & Related papers (2023-06-16T01:46:07Z) - A New Semi-supervised Learning Benchmark for Classifying View and
Diagnosing Aortic Stenosis from Echocardiograms [4.956777496509955]
We develop a benchmark dataset to assess semi-supervised approaches to two tasks relevant to cardiac ultrasound (echocardiogram) interpretation.
We find that a state-of-the-art method called MixMatch achieves promising gains in heldout accuracy on both tasks.
We pursue patient-level diagnosis prediction, which requires aggregating across hundreds of images of diverse view types.
arXiv Detail & Related papers (2021-07-30T21:08:12Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
We propose itvariational knowledge distillation (VKD), which is a new probabilistic inference framework for disease classification based on X-rays.
We demonstrate the effectiveness of our method on three public benchmark datasets with paired X-ray images and EHRs.
arXiv Detail & Related papers (2021-03-19T14:13:56Z) - Multi-label Thoracic Disease Image Classification with Cross-Attention
Networks [65.37531731899837]
We propose a novel scheme of Cross-Attention Networks (CAN) for automated thoracic disease classification from chest x-ray images.
We also design a new loss function that beyond cross-entropy loss to help cross-attention process and is able to overcome the imbalance between classes and easy-dominated samples within each class.
arXiv Detail & Related papers (2020-07-21T14:37:00Z) - Collaborative Unsupervised Domain Adaptation for Medical Image Diagnosis [102.40869566439514]
We seek to exploit rich labeled data from relevant domains to help the learning in the target task via Unsupervised Domain Adaptation (UDA)
Unlike most UDA methods that rely on clean labeled data or assume samples are equally transferable, we innovatively propose a Collaborative Unsupervised Domain Adaptation algorithm.
We theoretically analyze the generalization performance of the proposed method, and also empirically evaluate it on both medical and general images.
arXiv Detail & Related papers (2020-07-05T11:49:17Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
We present a relation-driven semi-supervised framework for medical image classification.
It exploits the unlabeled data by encouraging the prediction consistency of given input under perturbations.
Our method outperforms many state-of-the-art semi-supervised learning methods on both single-label and multi-label image classification scenarios.
arXiv Detail & Related papers (2020-05-15T06:57:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.