論文の概要: BILTS: A Bi-Invariant Similarity Measure for Robust Object Trajectory Recognition under Reference Frame Variations
- arxiv url: http://arxiv.org/abs/2405.04392v2
- Date: Fri, 17 Jan 2025 15:21:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-20 13:57:09.808293
- Title: BILTS: A Bi-Invariant Similarity Measure for Robust Object Trajectory Recognition under Reference Frame Variations
- Title(参考訳): BILTS:参照フレーム変動下におけるロバスト物体軌道認識のためのバイ不変類似度測定
- Authors: Arno Verduyn, Erwin Aertbeliën, Glenn Maes, Joris De Schutter, Maxim Vochten,
- Abstract要約: 本稿では,参照フレームの変動による文脈変動に着目した。
オブジェクトの運動軌跡を文脈不変の方法で比較する類似性尺度が導入された。
BILTS(textitBi-Invariant Local Trajectory-Shape similarity)尺度を提案する。
- 参考スコア(独自算出の注目度): 1.590337187050683
- License:
- Abstract: When similar object motions are performed in diverse contexts but are meant to be recognized under a single classification, these contextual variations act as disturbances that negatively affect accurate motion recognition. In this paper, we focus on contextual variations caused by reference frame variations. To robustly deal with these variations, similarity measures have been introduced that compare object motion trajectories in a context-invariant manner. However, most are highly sensitive to noise near singularities, where the measure is not uniquely defined, and lack bi-invariance (invariance to both world and body frame variations). To address these issues, we propose the novel \textit{Bi-Invariant Local Trajectory-Shape Similarity} (BILTS) measure. Compared to other measures, the BILTS measure uniquely offers bi-invariance, boundedness, and third-order shape identity. Aimed at practical implementations, we devised a discretized and regularized version of the BILTS measure which shows exceptional robustness to singularities. This is demonstrated through rigorous recognition experiments using multiple datasets. On average, BILTS attained the highest recognition ratio and least sensitivity to contextual variations compared to other invariant object motion similarity measures. We believe that the BILTS measure is a valuable tool for recognizing motions performed in diverse contexts and has potential in other applications, including the recognition, segmentation, and adaptation of both motion and force trajectories.
- Abstract(参考訳): 類似した物体の動きが多様な文脈で実行されるが、単一の分類の下で認識されることが意図される場合、これらの状況変化は正確な動きの認識に悪影響を及ぼす障害として機能する。
本稿では,参照フレームの変動による文脈変動に着目した。
これらの変動に頑健に対処するために、オブジェクトの運動軌跡を文脈不変の方法で比較する類似性対策が導入された。
しかし、ほとんどの場合、測度が一意に定義されていない特異点近傍の雑音に非常に敏感であり、二変量(世界と身体の両方の変動)が欠如している。
これらの問題に対処するため, 新規な局所軌道形状類似度尺度 (BILTS) を提案する。
他の測度と比較すると、BILTS測度は双不変性、有界性、三階形状の恒等性を提供する。
実践的な実装を目的としたBILTS尺度の離散化および正規化バージョンを考案し,特異点に対する例外的ロバスト性を示した。
これは、複数のデータセットを用いた厳密な認識実験によって実証される。
BILTSは、他の不変物体運動類似度測定値と比較して、平均して認識率が最も高く、文脈変動に対する感度が低かった。
BILTS尺度は様々な状況下で実行される動きを認識できる貴重なツールであり、運動と力の軌跡の認識、セグメンテーション、適応など他の応用にも可能性を持っていると我々は信じている。
関連論文リスト
- SoftCVI: Contrastive variational inference with self-generated soft labels [2.5398014196797614]
変分推論とマルコフ連鎖モンテカルロ法がこのタスクの主要なツールである。
ソフトコントラスト変動推論(SoftCVI)を導入し、コントラスト推定フレームワークを用いて変動対象のファミリーを導出する。
我々は、SoftCVIを用いて、訓練や大量発見に安定な目標を定式化することができ、他の変分アプローチよりも頻繁に優れた推論が可能であることを発見した。
論文 参考訳(メタデータ) (2024-07-22T14:54:12Z) - Distractors-Immune Representation Learning with Cross-modal Contrastive Regularization for Change Captioning [71.14084801851381]
変更キャプションは、類似した画像間のセマンティックな変化を簡潔に記述することを目的としている。
既存のほとんどの手法は、それらの違いを直接キャプチャし、エラーを起こしやすい特徴を得るリスクを負う。
本稿では,2つの画像表現の対応するチャネルを関連づけるイントラクタ免疫表現学習ネットワークを提案する。
論文 参考訳(メタデータ) (2024-07-16T13:00:33Z) - Size-invariance Matters: Rethinking Metrics and Losses for Imbalanced Multi-object Salient Object Detection [133.66006666465447]
現在のメトリクスはサイズに敏感で、大きなオブジェクトが集中し、小さなオブジェクトが無視される傾向があります。
サイズに基づくバイアスは、追加のセマンティック情報なしでは不適切であるため、評価はサイズ不変であるべきだと論じる。
我々は,この目標に適した最適化フレームワークを開発し,異なる大きさのオブジェクトの検出において,大幅な改善を実現した。
論文 参考訳(メタデータ) (2024-05-16T03:01:06Z) - Align, Perturb and Decouple: Toward Better Leverage of Difference
Information for RSI Change Detection [24.249552791014644]
変化検出は、リモートセンシング画像(RSI)解析において広く採用されている手法である。
そこで我々は,アライメント,摂動,デカップリングといった差分情報を完全に活用するための一連の操作を提案する。
論文 参考訳(メタデータ) (2023-05-30T03:39:53Z) - Self-similarity Driven Scale-invariant Learning for Weakly Supervised
Person Search [66.95134080902717]
自己相似性駆動型スケール不変学習(SSL)という新しいワンステップフレームワークを提案する。
本稿では,ネットワークを前景と学習スケール不変の機能に集中させるための,マルチスケール・エクステンプラー・ブランチを提案する。
PRWおよびCUHK-SYSUデータベースの実験により,本手法の有効性が示された。
論文 参考訳(メタデータ) (2023-02-25T04:48:11Z) - Grounding Representation Similarity with Statistical Testing [8.296135566684065]
我々は,機能的行動に影響を与える変化や,そうでない変化に対する特異性に対して,尺度は敏感であるべきだと論じる。
我々は、分布シフトの正確性や堅牢性など、様々な機能的挙動を通じてこれを定量化する。
現在のメトリクスはさまざまな弱点を示しており、古典的なベースラインが驚くほどうまく機能していることに気付き、すべてのメトリクスが失敗しているように見える設定を強調しています。
論文 参考訳(メタデータ) (2021-08-03T17:58:16Z) - Semantic Change Detection with Asymmetric Siamese Networks [71.28665116793138]
2つの空中画像が与えられた場合、セマンティックチェンジ検出は、土地被覆のバリエーションを特定し、それらの変化タイプをピクセルワイド境界で識別することを目的としている。
この問題は、正確な都市計画や天然資源管理など、多くの地球ビジョンに関連するタスクにおいて不可欠である。
本研究では, 広く異なる構造を持つモジュールから得られた特徴対を用いて意味変化を同定し, 同定するための非対称システマネットワーク(ASN)を提案する。
論文 参考訳(メタデータ) (2020-10-12T13:26:30Z) - Composed Variational Natural Language Generation for Few-shot Intents [118.37774762596123]
現実的な不均衡シナリオにおいて、数ショットのインテントに対するトレーニング例を生成します。
生成した発話の質を評価するために、一般化された複数ショット意図検出タスクについて実験を行った。
提案モデルでは,2つの実世界の意図検出データセットに対して,最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2020-09-21T17:48:43Z) - Shift Equivariance in Object Detection [8.03777903218606]
近年の研究では、CNNベースの分類器はシフト不変ではないことが示されている。
このことが物体検出にどの程度影響を与えるかは、主に2つの構造の違いと現代の検出器の予測空間の寸法の違いから明らかでない。
シフトした画像集合上での平均値の平均値と平均値の下位値と上位値のグリーディ探索に基づく評価指標を提案する。
論文 参考訳(メタデータ) (2020-08-13T10:02:02Z) - Learning Disentangled Representations with Latent Variation
Predictability [102.4163768995288]
本稿では,潜在不整合表現の変動予測可能性について述べる。
逆生成プロセス内では、潜時変動と対応する画像対の相互情報を最大化することにより、変動予測可能性を高める。
本研究では,潜在表現の絡み合いを測るために,基礎的構造的生成因子に依存しない評価指標を開発する。
論文 参考訳(メタデータ) (2020-07-25T08:54:26Z) - Person Re-identification by analyzing Dynamic Variations in Gait
Sequences [0.0]
本稿では,動的な動きの変動を分析し,予測された変化のデータベースを使わずに人物を識別する,新たなアプローチを提案する。
CASIA-B Gait Databaseは実験分析の主要なデータセットとして使用される。
論文 参考訳(メタデータ) (2020-06-26T17:16:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。