論文の概要: Symplectic Autoencoders for Model Reduction of Hamiltonian Systems
- arxiv url: http://arxiv.org/abs/2312.10004v1
- Date: Fri, 15 Dec 2023 18:20:25 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-18 14:29:46.448158
- Title: Symplectic Autoencoders for Model Reduction of Hamiltonian Systems
- Title(参考訳): ハミルトン系のモデル還元のためのシンプレクティックオートエンコーダ
- Authors: Benedikt Brantner, Michael Kraus
- Abstract要約: 長期の数値安定性を確保するためには,システムに関連するシンプレクティックな構造を維持することが重要である。
本稿では,次元削減のための確立されたツールであるオートエンコーダの精神の中で,新しいニューラルネットワークアーキテクチャを提案する。
ネットワークのトレーニングには,非標準勾配降下法を適用した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many applications, such as optimization, uncertainty quantification and
inverse problems, require repeatedly performing simulations of
large-dimensional physical systems for different choices of parameters. This
can be prohibitively expensive.
In order to save computational cost, one can construct surrogate models by
expressing the system in a low-dimensional basis, obtained from training data.
This is referred to as model reduction.
Past investigations have shown that, when performing model reduction of
Hamiltonian systems, it is crucial to preserve the symplectic structure
associated with the system in order to ensure long-term numerical stability.
Up to this point structure-preserving reductions have largely been limited to
linear transformations. We propose a new neural network architecture in the
spirit of autoencoders, which are established tools for dimension reduction and
feature extraction in data science, to obtain more general mappings.
In order to train the network, a non-standard gradient descent approach is
applied that leverages the differential-geometric structure emerging from the
network design.
The new architecture is shown to significantly outperform existing designs in
accuracy.
- Abstract(参考訳): 最適化、不確かさの定量化、逆問題といった多くの応用では、パラメータの異なる大次元物理系のシミュレーションを繰り返し行う必要がある。
これは非常に高価である。
計算コストを抑えるため、トレーニングデータから得られる低次元でシステムを表現することで代理モデルを構築することができる。
これをモデル還元と呼ぶ。
過去の研究では、ハミルトン系のモデル還元を行う場合、長期的な数値安定性を確保するために、システムに関連するシンプレクティック構造を維持することが重要であることが示されている。
この点まで、構造保存還元はほとんど線形変換に制限されている。
データサイエンスにおける次元縮小と特徴抽出のための確立されたツールであるオートエンコーダの精神で、より一般的なマッピングを得るために新しいニューラルネットワークアーキテクチャを提案する。
ネットワークをトレーニングするために,ネットワーク設計から生じる微分幾何学的構造を利用する非標準勾配降下法を適用した。
新しいアーキテクチャは、既存の設計よりも精度が高いことが示されている。
関連論文リスト
- Physics-Informed Machine Learning for Seismic Response Prediction OF Nonlinear Steel Moment Resisting Frame Structures [6.483318568088176]
PiML法は、非線形構造の地震応答をモデル化するために、科学的原理と物理法則をディープニューラルネットワークに統合する。
運動方程式を操作することは、システムの非線形性を学習し、物理的に解釈可能な結果の中で解を閉じ込めるのに役立つ。
結果、既存の物理誘導LSTMモデルよりも複雑なデータを処理し、他の非物理データ駆動ネットワークより優れている。
論文 参考訳(メタデータ) (2024-02-28T02:16:03Z) - Learning Nonlinear Projections for Reduced-Order Modeling of Dynamical
Systems using Constrained Autoencoders [0.0]
制約付き自己エンコーダニューラルネットワークによって記述された非線形射影のクラスを導入し,データから多様体と射影繊維の両方を学習する。
我々のアーキテクチャでは、エンコーダがデコーダの左逆であることを保証するために、可逆的アクティベーション関数と生物直交重み行列を用いる。
また,高速なダイナミックスと非正規性を考慮した斜め射影ファイバの学習を促進するために,新しいダイナミックス対応コスト関数を導入する。
論文 参考訳(メタデータ) (2023-07-28T04:01:48Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
画像超解像(SR)は、CNNからトランスフォーマーアーキテクチャへの広範なニューラルネットワーク設計を目撃している。
本研究は,市販のネットワーク設計を生かし,基礎となる計算オーバーヘッドを低減するため,超高解像度イテレーションにおけるネットワークプルーニングの可能性について検討する。
本研究では, ランダムネットワークのスパース構造を最適化し, 重要でない重みを小さめに微調整することにより, 反復型軟収縮率(ISS-P)法を提案する。
論文 参考訳(メタデータ) (2023-03-16T21:06:13Z) - Conditional deep generative models as surrogates for spatial field
solution reconstruction with quantified uncertainty in Structural Health
Monitoring applications [0.0]
構造健康モニタリング(SHM)に関わる問題では,高次元データの処理と不確実性の定量化の両方が可能なモデルが必要である。
本稿では,そのような応用と高次元構造シミュレーションを主目的とした条件付き深部生成モデルを提案する。
このモデルは、参照有限要素(FE)ソリューションと比較して高い再構成精度を達成でき、同時に負荷不確実性を符号化することに成功した。
論文 参考訳(メタデータ) (2023-02-14T20:13:24Z) - Low-dimensional Data-based Surrogate Model of a Continuum-mechanical
Musculoskeletal System Based on Non-intrusive Model Order Reduction [0.0]
データ駆動型モデルオーダーリダクションを用いた代理モデルのような従来の手法は、高忠実度モデルをより広く利用するために用いられる。
ヒト上腕部の複素有限要素モデルに対する代理モデル手法の利点を実証する。
論文 参考訳(メタデータ) (2023-02-13T17:14:34Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
トレーニングセットとその構造が長期予測の品質に与える影響を考察する。
トレーニングセットのインフォームドデザインは,システムの不変性と基盤となるアトラクションの構造に基づいて,結果のモデルを大幅に改善することを示す。
論文 参考訳(メタデータ) (2021-12-15T20:09:20Z) - Stabilizing Equilibrium Models by Jacobian Regularization [151.78151873928027]
ディープ均衡ネットワーク(Deep equilibrium Network, DEQs)は、単一非線形層の固定点を見つけるために従来の深さを推定する新しいモデルのクラスである。
本稿では、平衡モデルの学習を安定させるために、固定点更新方程式のヤコビアンを明示的に正規化するDECモデルの正規化スキームを提案する。
この正規化は計算コストを最小限に抑え、前方と後方の両方の固定点収束を著しく安定化させ、高次元の現実的な領域に順応することを示した。
論文 参考訳(メタデータ) (2021-06-28T00:14:11Z) - Efficient Micro-Structured Weight Unification and Pruning for Neural
Network Compression [56.83861738731913]
ディープニューラルネットワーク(DNN)モデルは、特にリソース制限されたデバイスにおいて、実用的なアプリケーションに不可欠である。
既往の非構造的あるいは構造化された重量刈り法は、推論を真に加速することはほとんど不可能である。
ハードウェア互換のマイクロ構造レベルでの一般化された重み統一フレームワークを提案し,高い圧縮と加速度を実現する。
論文 参考訳(メタデータ) (2021-06-15T17:22:59Z) - A novel Deep Neural Network architecture for non-linear system
identification [78.69776924618505]
非線形システム識別のための新しいDeep Neural Network (DNN)アーキテクチャを提案する。
メモリシステムにインスパイアされたインダクティブバイアス(アーキテクチャ)と正規化(損失関数)を導入する。
このアーキテクチャは、利用可能なデータのみに基づいて、自動的な複雑性の選択を可能にする。
論文 参考訳(メタデータ) (2021-06-06T10:06:07Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) モデルを提案する。
我々のモデルは、フレキシブルニューラルネットワークを用いて各タイムスタンプの平均と分散をパラメータ化する。
合成データセットと公開実世界のベンチマークの両方において,本モデルの有効性を示す。
論文 参考訳(メタデータ) (2021-02-02T06:15:15Z) - Neural Closure Models for Dynamical Systems [35.000303827255024]
低忠実度モデルに対する非マルコフ閉閉パラメータ化を学習する新しい手法を開発した。
ニューラルクロージャモデル」はニューラル遅延微分方程式(nDDE)を用いた低忠実度モデルを強化する
非マルコヴィアンオーバーマルコヴィアンクロージャを使用することで、長期的精度が向上し、より小さなネットワークが必要であることを示した。
論文 参考訳(メタデータ) (2020-12-27T05:55:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。