Predicting Transonic Flowfields in Non-Homogeneous Unstructured Grids Using Autoencoder Graph Convolutional Networks
- URL: http://arxiv.org/abs/2405.04396v1
- Date: Tue, 7 May 2024 15:18:21 GMT
- Title: Predicting Transonic Flowfields in Non-Homogeneous Unstructured Grids Using Autoencoder Graph Convolutional Networks
- Authors: Gabriele Immordino, Andrea Vaiuso, Andrea Da Ronch, Marcello Righi,
- Abstract summary: This paper focuses on addressing challenges posed by non-homogeneous unstructured grids, commonly used in Computational Fluid Dynamics (CFD)
The core of our approach centers on geometric deep learning, specifically the utilization of graph convolutional network (GCN)
The novel Autoencoder GCN architecture enhances prediction accuracy by propagating information to distant nodes and emphasizing influential points.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper focuses on addressing challenges posed by non-homogeneous unstructured grids, commonly used in Computational Fluid Dynamics (CFD). Their prevalence in CFD scenarios has motivated the exploration of innovative approaches for generating reduced-order models. The core of our approach centers on geometric deep learning, specifically the utilization of graph convolutional network (GCN). The novel Autoencoder GCN architecture enhances prediction accuracy by propagating information to distant nodes and emphasizing influential points. This architecture, with GCN layers and encoding/decoding modules, reduces dimensionality based on pressure-gradient values. The autoencoder structure improves the network capability to identify key features, contributing to a more robust and accurate predictive model. To validate the proposed methodology, we analyzed two different test cases: wing-only model and wing--body configuration. Precise reconstruction of steady-state distributed quantities within a two-dimensional parametric space underscores the reliability and versatility of the implemented approach.
Related papers
- Positional Encoder Graph Quantile Neural Networks for Geographic Data [4.277516034244117]
We introduce the Positional Graph Quantile Neural Network (PE-GQNN), a novel method that integrates PE-GNNs, Quantile Neural Networks, and recalibration techniques in a fully nonparametric framework.
Experiments on benchmark datasets demonstrate that PE-GQNN significantly outperforms existing state-of-the-art methods in both predictive accuracy and uncertainty quantification.
arXiv Detail & Related papers (2024-09-27T16:02:12Z) - TCCT-Net: Two-Stream Network Architecture for Fast and Efficient Engagement Estimation via Behavioral Feature Signals [58.865901821451295]
We present a novel two-stream feature fusion "Tensor-Convolution and Convolution-Transformer Network" (TCCT-Net) architecture.
To better learn the meaningful patterns in the temporal-spatial domain, we design a "CT" stream that integrates a hybrid convolutional-transformer.
In parallel, to efficiently extract rich patterns from the temporal-frequency domain, we introduce a "TC" stream that uses Continuous Wavelet Transform (CWT) to represent information in a 2D tensor form.
arXiv Detail & Related papers (2024-04-15T06:01:48Z) - Symplectic Autoencoders for Model Reduction of Hamiltonian Systems [0.0]
It is crucial to preserve the symplectic structure associated with the system in order to ensure long-term numerical stability.
We propose a new neural network architecture in the spirit of autoencoders, which are established tools for dimension reduction.
In order to train the network, a non-standard gradient descent approach is applied.
arXiv Detail & Related papers (2023-12-15T18:20:25Z) - Identification of vortex in unstructured mesh with graph neural networks [0.0]
We present a Graph Neural Network (GNN) based model with U-Net architecture to identify the vortex in CFD results on unstructured meshes.
A vortex auto-labeling method is proposed to label vortex regions in 2D CFD meshes.
arXiv Detail & Related papers (2023-11-11T12:10:16Z) - An Adaptive and Stability-Promoting Layerwise Training Approach for Sparse Deep Neural Network Architecture [0.0]
This work presents a two-stage adaptive framework for developing deep neural network (DNN) architectures that generalize well for a given training data set.
In the first stage, a layerwise training approach is adopted where a new layer is added each time and trained independently by freezing parameters in the previous layers.
We introduce a epsilon-delta stability-promoting concept as a desirable property for a learning algorithm and show that employing manifold regularization yields a epsilon-delta stability-promoting algorithm.
arXiv Detail & Related papers (2022-11-13T09:51:16Z) - Orthogonal Stochastic Configuration Networks with Adaptive Construction
Parameter for Data Analytics [6.940097162264939]
randomness makes SCNs more likely to generate approximate linear correlative nodes that are redundant and low quality.
In light of a fundamental principle in machine learning, that is, a model with fewer parameters holds improved generalization.
This paper proposes orthogonal SCN, termed OSCN, to filtrate out the low-quality hidden nodes for network structure reduction.
arXiv Detail & Related papers (2022-05-26T07:07:26Z) - Rate Distortion Characteristic Modeling for Neural Image Compression [59.25700168404325]
End-to-end optimization capability offers neural image compression (NIC) superior lossy compression performance.
distinct models are required to be trained to reach different points in the rate-distortion (R-D) space.
We make efforts to formulate the essential mathematical functions to describe the R-D behavior of NIC using deep network and statistical modeling.
arXiv Detail & Related papers (2021-06-24T12:23:05Z) - Probabilistic Graph Attention Network with Conditional Kernels for
Pixel-Wise Prediction [158.88345945211185]
We present a novel approach that advances the state of the art on pixel-level prediction in a fundamental aspect, i.e. structured multi-scale features learning and fusion.
We propose a probabilistic graph attention network structure based on a novel Attention-Gated Conditional Random Fields (AG-CRFs) model for learning and fusing multi-scale representations in a principled manner.
arXiv Detail & Related papers (2021-01-08T04:14:29Z) - Spatio-Temporal Inception Graph Convolutional Networks for
Skeleton-Based Action Recognition [126.51241919472356]
We design a simple and highly modularized graph convolutional network architecture for skeleton-based action recognition.
Our network is constructed by repeating a building block that aggregates multi-granularity information from both the spatial and temporal paths.
arXiv Detail & Related papers (2020-11-26T14:43:04Z) - A Point-Cloud Deep Learning Framework for Prediction of Fluid Flow
Fields on Irregular Geometries [62.28265459308354]
Network learns end-to-end mapping between spatial positions and CFD quantities.
Incompress laminar steady flow past a cylinder with various shapes for its cross section is considered.
Network predicts the flow fields hundreds of times faster than our conventional CFD.
arXiv Detail & Related papers (2020-10-15T12:15:02Z) - Dual-constrained Deep Semi-Supervised Coupled Factorization Network with
Enriched Prior [80.5637175255349]
We propose a new enriched prior based Dual-constrained Deep Semi-Supervised Coupled Factorization Network, called DS2CF-Net.
To ex-tract hidden deep features, DS2CF-Net is modeled as a deep-structure and geometrical structure-constrained neural network.
Our network can obtain state-of-the-art performance for representation learning and clustering.
arXiv Detail & Related papers (2020-09-08T13:10:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.