Some variation of COBRA in sequential learning setup
- URL: http://arxiv.org/abs/2405.04539v1
- Date: Sun, 7 Apr 2024 17:41:02 GMT
- Title: Some variation of COBRA in sequential learning setup
- Authors: Aryan Bhambu, Arabin Kumar Dey,
- Abstract summary: We use specific data preprocessing techniques which makes a radical change in the behaviour of prediction.
Our proposed methodologies outperform all state-of-the-art comparative models.
We illustrate the methodologies through eight time series datasets from three categories: cryptocurrency, stock index, and short-term load forecasting.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: This research paper introduces innovative approaches for multivariate time series forecasting based on different variations of the combined regression strategy. We use specific data preprocessing techniques which makes a radical change in the behaviour of prediction. We compare the performance of the model based on two types of hyper-parameter tuning Bayesian optimisation (BO) and Usual Grid search. Our proposed methodologies outperform all state-of-the-art comparative models. We illustrate the methodologies through eight time series datasets from three categories: cryptocurrency, stock index, and short-term load forecasting.
Related papers
- MGCP: A Multi-Grained Correlation based Prediction Network for Multivariate Time Series [54.91026286579748]
We propose a Multi-Grained Correlations-based Prediction Network.
It simultaneously considers correlations at three levels to enhance prediction performance.
It employs adversarial training with an attention mechanism-based predictor and conditional discriminator to optimize prediction results at coarse-grained level.
arXiv Detail & Related papers (2024-05-30T03:32:44Z) - Infinite forecast combinations based on Dirichlet process [9.326879672480413]
This paper introduces a deep learning ensemble forecasting model based on the Dirichlet process.
It offers substantial improvements in prediction accuracy and stability compared to a single benchmark model.
arXiv Detail & Related papers (2023-11-21T06:41:41Z) - Optimizing accuracy and diversity: a multi-task approach to forecast
combinations [0.0]
We present a multi-task optimization paradigm that focuses on solving both problems simultaneously.
It incorporates an additional learning and optimization task into the standard feature-based forecasting approach.
The proposed approach elicits the essential role of diversity in feature-based forecasting.
arXiv Detail & Related papers (2023-10-31T15:26:33Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
Multi-modal regression is important in forecasting nonstationary processes or with a complex mixture of distributions.
A Structured Radial Basis Function Network is presented as an ensemble of multiple hypotheses predictors for regression problems.
It is proved that this structured model can efficiently interpolate this tessellation and approximate the multiple hypotheses target distribution.
arXiv Detail & Related papers (2023-09-02T01:27:53Z) - Quick-Tune: Quickly Learning Which Pretrained Model to Finetune and How [62.467716468917224]
We propose a methodology that jointly searches for the optimal pretrained model and the hyperparameters for finetuning it.
Our method transfers knowledge about the performance of many pretrained models on a series of datasets.
We empirically demonstrate that our resulting approach can quickly select an accurate pretrained model for a new dataset.
arXiv Detail & Related papers (2023-06-06T16:15:26Z) - Unraveling Cold Start Enigmas in Predictive Analytics for OTT Media:
Synergistic Meta-Insights and Multimodal Ensemble Mastery [0.0]
We propose a generic approach to tackle cold start problems by leveraging metadata and employing multi-model ensemble techniques.
Our results indicate that the multi-model ensemble approach significantly improves prediction accuracy compared to individual models.
arXiv Detail & Related papers (2023-05-14T10:46:20Z) - Stock Trading Volume Prediction with Dual-Process Meta-Learning [20.588377161807916]
We propose a dual-process meta-learning method that treats the prediction of each stock as one task under the meta-learning framework.
Our method can model the common pattern behind different stocks with a meta-learner, while modeling the specific pattern for each stock across time spans with stock-dependent parameters.
arXiv Detail & Related papers (2022-10-11T13:35:20Z) - Automatic Pharma News Categorization [0.0]
We use a text dataset consisting of 23 news categories relevant to pharma information science.
We compare the fine-tuning performance of multiple transformer models in a classification task.
We propose an ensemble model consisting of the top performing individual predictors.
arXiv Detail & Related papers (2021-12-28T08:42:16Z) - Cluster-and-Conquer: A Framework For Time-Series Forecasting [94.63501563413725]
We propose a three-stage framework for forecasting high-dimensional time-series data.
Our framework is highly general, allowing for any time-series forecasting and clustering method to be used in each step.
When instantiated with simple linear autoregressive models, we are able to achieve state-of-the-art results on several benchmark datasets.
arXiv Detail & Related papers (2021-10-26T20:41:19Z) - Predicting Temporal Sets with Deep Neural Networks [50.53727580527024]
We propose an integrated solution based on the deep neural networks for temporal sets prediction.
A unique perspective is to learn element relationship by constructing set-level co-occurrence graph.
We design an attention-based module to adaptively learn the temporal dependency of elements and sets.
arXiv Detail & Related papers (2020-06-20T03:29:02Z) - Variational Hyper RNN for Sequence Modeling [69.0659591456772]
We propose a novel probabilistic sequence model that excels at capturing high variability in time series data.
Our method uses temporal latent variables to capture information about the underlying data pattern.
The efficacy of the proposed method is demonstrated on a range of synthetic and real-world sequential data.
arXiv Detail & Related papers (2020-02-24T19:30:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.