論文の概要: Empathy Through Multimodality in Conversational Interfaces
- arxiv url: http://arxiv.org/abs/2405.04777v1
- Date: Wed, 8 May 2024 02:48:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-09 15:24:34.062298
- Title: Empathy Through Multimodality in Conversational Interfaces
- Title(参考訳): 会話インタフェースにおけるマルチモーダルによる共感
- Authors: Mahyar Abbasian, Iman Azimi, Mohammad Feli, Amir M. Rahmani, Ramesh Jain,
- Abstract要約: 会話型健康エージェント(CHA)は、感情的なインテリジェンスを組み込むためにテキスト分析を超越するニュアンスなサポートを提供することで、医療を再定義している。
本稿では、豊かなマルチモーダル対話のためのLCMベースのCHAについて紹介する。
マルチモーダルな手がかりを解析することにより、ユーザの感情状態に順応的に解釈し、応答し、文脈的に認識され、共感的に反響する音声応答を提供する。
- 参考スコア(独自算出の注目度): 1.360649555639909
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Agents represent one of the most emerging applications of Large Language Models (LLMs) and Generative AI, with their effectiveness hinging on multimodal capabilities to navigate complex user environments. Conversational Health Agents (CHAs), a prime example of this, are redefining healthcare by offering nuanced support that transcends textual analysis to incorporate emotional intelligence. This paper introduces an LLM-based CHA engineered for rich, multimodal dialogue-especially in the realm of mental health support. It adeptly interprets and responds to users' emotional states by analyzing multimodal cues, thus delivering contextually aware and empathetically resonant verbal responses. Our implementation leverages the versatile openCHA framework, and our comprehensive evaluation involves neutral prompts expressed in diverse emotional tones: sadness, anger, and joy. We evaluate the consistency and repeatability of the planning capability of the proposed CHA. Furthermore, human evaluators critique the CHA's empathic delivery, with findings revealing a striking concordance between the CHA's outputs and evaluators' assessments. These results affirm the indispensable role of vocal (soon multimodal) emotion recognition in strengthening the empathetic connection built by CHAs, cementing their place at the forefront of interactive, compassionate digital health solutions.
- Abstract(参考訳): エージェントは、複雑なユーザ環境をナビゲートするマルチモーダル機能に基づく、Large Language Models(LLM)とGenerative AIの最も新興のアプリケーションのひとつである。
この主要な例である会話型健康エージェント(CHA)は、感情的な知性を組み込むためにテキスト分析を超越したニュアンスなサポートを提供することで、医療を再定義している。
本稿では、豊かなマルチモーダル対話のためのLCMベースのCHAについて紹介する。
マルチモーダルな手がかりを解析することにより、ユーザの感情状態に順応的に解釈し、応答し、文脈的に認識され、共感的に反響する音声応答を提供する。
我々の実装は万能なopenCHAフレームワークを活用しており、包括的な評価には、悲しみ、怒り、喜びといった様々な感情のトーンで表される中立的なプロンプトが関係している。
提案したCHAの計画能力の一貫性と再現性を評価する。
さらに、人間の評価者はCHAの共感的成果を批判し、CHAのアウトプットと評価者の評価との間に顕著な一致を示した。
これらの結果は、CHAが構築した共感的つながりを強化し、対話的で思いやりのあるデジタルヘルスソリューションの最前線に位置づける上で、声(soon multimodal)感情認識が不可欠であることを裏付けるものである。
関連論文リスト
- AntEval: Evaluation of Social Interaction Competencies in LLM-Driven
Agents [65.16893197330589]
大規模言語モデル(LLM)は、幅広いシナリオで人間の振る舞いを再現する能力を示した。
しかし、複雑なマルチ文字のソーシャルインタラクションを扱う能力については、まだ完全には研究されていない。
本稿では,新しいインタラクションフレームワークと評価手法を含むマルチエージェントインタラクション評価フレームワーク(AntEval)を紹介する。
論文 参考訳(メタデータ) (2024-01-12T11:18:00Z) - From Multilingual Complexity to Emotional Clarity: Leveraging
Commonsense to Unveil Emotions in Code-Mixed Dialogues [38.87497808740538]
会話中の感情を理解することは人間のコミュニケーションの基本的な側面であり、会話における感情認識のためのNLP研究を推進している。
本稿では,感情のより深い理解を促進するために,コモンセンス情報を対話コンテキストと統合する革新的なアプローチを提案する。
総合的な実験により,ERCにおけるコモンセンスの体系的導入によって得られた実質的な性能向上が示された。
論文 参考訳(メタデータ) (2023-10-19T18:17:00Z) - Building Emotional Support Chatbots in the Era of LLMs [64.06811786616471]
我々は,Large Language Models (LLMs) の計算能力で人間の洞察を合成する革新的な方法論を導入する。
また,ChatGPTの文脈内学習の可能性を利用して,ExTESと呼ばれる感情支援対話データセットを生成する。
次に、LLaMAモデルに高度なチューニング手法を展開し、多様なトレーニング戦略の影響を検証し、最終的に感情的支援の相互作用に細心の注意を払ってLLMを出力する。
論文 参考訳(メタデータ) (2023-08-17T10:49:18Z) - Improving Empathetic Dialogue Generation by Dynamically Infusing
Commonsense Knowledge [39.536604198392375]
共感的な会話では、個人は他人に対する共感を表現する。
これまでの研究は主に、話者の感情を利用して共感的な反応を生み出すことに焦点を当ててきた。
本稿では,コモンセンス知識選択のための適応モジュールを組み込んだ共感応答生成手法を提案する。
論文 参考訳(メタデータ) (2023-05-24T10:25:12Z) - Response-act Guided Reinforced Dialogue Generation for Mental Health
Counseling [25.524804770124145]
本稿では、メンタルヘルスカウンセリング会話のための対話行動誘導応答生成器READERについて述べる。
READERは変換器上に構築されており、次の発話に対する潜在的な対話行為d(t+1)を共同で予測し、適切な応答u(t+1)を生成する。
ベンチマークカウンセリング会話データセットであるHOPE上でREADERを評価する。
論文 参考訳(メタデータ) (2023-01-30T08:53:35Z) - Co-Located Human-Human Interaction Analysis using Nonverbal Cues: A
Survey [71.43956423427397]
本研究の目的は,非言語的キューと計算手法を同定し,効果的な性能を実現することである。
この調査は、最も広い範囲の社会現象と相互作用設定を巻き込むことによって、相手と異なる。
もっともよく使われる非言語キュー、計算方法、相互作用環境、センシングアプローチは、それぞれマイクとカメラを備えた3,4人で構成される会話活動、ベクターマシンのサポート、ミーティングである。
論文 参考訳(メタデータ) (2022-07-20T13:37:57Z) - Enabling Harmonious Human-Machine Interaction with Visual-Context
Augmented Dialogue System: A Review [40.49926141538684]
Visual Context Augmented Dialogue System (VAD) は、マルチモーダル情報を知覚し理解することで人間とコミュニケーションする能力を持つ。
VADは、エンゲージメントとコンテキスト対応の応答を生成する可能性を秘めている。
論文 参考訳(メタデータ) (2022-07-02T09:31:37Z) - Multimodal Emotion Recognition using Transfer Learning from Speaker
Recognition and BERT-based models [53.31917090073727]
本稿では,音声とテキストのモダリティから,伝達学習モデルと微調整モデルとを融合したニューラルネットワークによる感情認識フレームワークを提案する。
本稿では,対話型感情的モーションキャプチャー・データセットにおけるマルチモーダル・アプローチの有効性を評価する。
論文 参考訳(メタデータ) (2022-02-16T00:23:42Z) - Target Guided Emotion Aware Chat Machine [58.8346820846765]
意味レベルと感情レベルにおける投稿に対する応答の整合性は、人間のような対話を提供する対話システムにとって不可欠である。
この記事では、投稿中のセマンティクスと感情を同時にエンコードできる、未定義のエンドツーエンドニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2020-11-15T01:55:37Z) - You Impress Me: Dialogue Generation via Mutual Persona Perception [62.89449096369027]
認知科学の研究は、理解が高品質なチャット会話に不可欠なシグナルであることを示唆している。
そこで我々は,P2 Botを提案する。このP2 Botは,理解を明示的にモデル化することを目的とした送信機受信者ベースのフレームワークである。
論文 参考訳(メタデータ) (2020-04-11T12:51:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。