論文の概要: From Personas to Talks: Revisiting the Impact of Personas on LLM-Synthesized Emotional Support Conversations
- arxiv url: http://arxiv.org/abs/2502.11451v1
- Date: Mon, 17 Feb 2025 05:24:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:12:34.576141
- Title: From Personas to Talks: Revisiting the Impact of Personas on LLM-Synthesized Emotional Support Conversations
- Title(参考訳): ペルソナから講演へ:LLM-synthesized Emotional Support Conversationsにおけるペルソナの影響を再考する
- Authors: Shenghan Wu, Yang Deng, Yimo Zhu, Wynne Hsu, Mong Li Lee,
- Abstract要約: 大規模言語モデル(LLM)は感情的サポートの会話の世代に革命をもたらした。
本稿では,感情的支援会話の創出におけるペルソナの役割について考察する。
- 参考スコア(独自算出の注目度): 19.67703146838264
- License:
- Abstract: The rapid advancement of Large Language Models (LLMs) has revolutionized the generation of emotional support conversations (ESC), offering scalable solutions with reduced costs and enhanced data privacy. This paper explores the role of personas in the creation of ESC by LLMs. Our research utilizes established psychological frameworks to measure and infuse persona traits into LLMs, which then generate dialogues in the emotional support scenario. We conduct extensive evaluations to understand the stability of persona traits in dialogues, examining shifts in traits post-generation and their impact on dialogue quality and strategy distribution. Experimental results reveal several notable findings: 1) LLMs can infer core persona traits, 2) subtle shifts in emotionality and extraversion occur, influencing the dialogue dynamics, and 3) the application of persona traits modifies the distribution of emotional support strategies, enhancing the relevance and empathetic quality of the responses. These findings highlight the potential of persona-driven LLMs in crafting more personalized, empathetic, and effective emotional support dialogues, which has significant implications for the future design of AI-driven emotional support systems.
- Abstract(参考訳): 大規模言語モデル(LLM)の急速な進歩は、コスト削減とデータプライバシの向上によるスケーラブルなソリューションを提供する感情サポート会話(ESC)の生成に革命をもたらした。
本稿では,LSMによるESC作成におけるペルソナの役割について考察する。
我々の研究は、確立された心理学的枠組みを利用して、パーソナ特性をLSMに測定し、注入し、感情的支援シナリオにおける対話を生成する。
本研究では,対話におけるペルソナ特性の安定性を理解するために,対話後の特徴の変化と,対話の質や戦略分布に与える影響について検討する。
実験結果からいくつかの顕著な発見が得られた。
1) LLM はコアペルソナ特性を推測することができる。
2)感情の微妙な変化と外転、対話力学への影響、
3)ペルソナ特性の適用は,感情的支援戦略の分布を変化させ,反応の関連性や共感的品質を高める。
これらの知見は、よりパーソナライズされ、共感的で、効果的な感情支援対話を構築する上で、ペルソナ駆動型LLMの可能性を強調し、AI駆動型感情支援システムの設計に重要な意味を持つ。
関連論文リスト
- Interactive Dialogue Agents via Reinforcement Learning on Hindsight Regenerations [58.65755268815283]
多くの実際の対話は対話的であり、つまりエージェントの発話が会話の相手に影響を与えるか、情報を引き出すか、意見を変えるかである。
この事実を利用して、既存の最適データを書き直し、拡張し、オフライン強化学習(RL)を介してトレーニングする。
実際の人間によるユーザ調査の結果、我々のアプローチは既存の最先端の対話エージェントを大きく上回っていることがわかった。
論文 参考訳(メタデータ) (2024-11-07T21:37:51Z) - CAPE: A Chinese Dataset for Appraisal-based Emotional Generation using Large Language Models [30.40159858361768]
認知評価理論に基づく感情コーパスという中国のデータセットであるCAPEを作成するための2段階の自動データ生成フレームワークを提案する。
このコーパスは、多様な個人的・状況的要因を考慮し、文脈的に適切な感情的反応を伴う対話を生成する。
我々の研究は、会話エージェントにおける感情表現を前進させる可能性を示し、よりニュアンスで有意義な人間とコンピュータの相互作用の道を開いた。
論文 参考訳(メタデータ) (2024-10-18T03:33:18Z) - Cause-Aware Empathetic Response Generation via Chain-of-Thought Fine-Tuning [12.766893968788263]
共感反応生成は、対話の文脈を理解し、表現された感情に反応する能力を持つエージェントを与える。
先行研究は、主に話者の感情的ラベルを活用することに重点を置いているが、感情の重要性が原因の推論を無視している。
そこで我々は,感情と原因をうまく設計したChain-of-Thoughtプロンプトを通じて統合した原因認識型共感生成手法を提案する。
論文 参考訳(メタデータ) (2024-08-21T13:11:03Z) - Empathy Through Multimodality in Conversational Interfaces [1.360649555639909]
会話型健康エージェント(CHA)は、感情的なインテリジェンスを組み込むためにテキスト分析を超越するニュアンスなサポートを提供することで、医療を再定義している。
本稿では、豊かなマルチモーダル対話のためのLCMベースのCHAについて紹介する。
マルチモーダルな手がかりを解析することにより、ユーザの感情状態に順応的に解釈し、応答し、文脈的に認識され、共感的に反響する音声応答を提供する。
論文 参考訳(メタデータ) (2024-05-08T02:48:29Z) - Personality-affected Emotion Generation in Dialog Systems [67.40609683389947]
ダイアログシステムに与えられた個性に基づいて感情を生成する新しいタスクであるパーソナリティ影響感情生成を提案する。
本課題の課題,すなわち,(1)個性と感情的要因を不均一に統合し,(2)対話場面における多粒性感情情報を抽出する。
その結果,感情生成性能はマクロF1では13%,重み付きF1では5%向上することが示唆された。
論文 参考訳(メタデータ) (2024-04-03T08:48:50Z) - Can Large Language Models be Good Emotional Supporter? Mitigating Preference Bias on Emotional Support Conversation [28.74445806009475]
この研究はESConv上での大規模言語モデル(LLM)の結果を分析した。
特定の戦略に対する高い嗜好を示すことは、効果的な感情的支援を妨げている。
その結果,(1) 特定の戦略に対する嗜好の低さは情緒的支援の進行を妨げること,(2) 外部援助は嗜好バイアスの軽減に役立つこと,(3) 既存のLCMだけでは感情的な支持者にはならないこと,などが強調された。
論文 参考訳(メタデータ) (2024-02-20T18:21:32Z) - Enhancing Emotional Generation Capability of Large Language Models via Emotional Chain-of-Thought [50.13429055093534]
大規模言語モデル(LLM)は様々な感情認識タスクにおいて顕著な性能を示した。
本研究では,感情生成タスクにおけるLLMの性能を高めるための感情連鎖(ECoT)を提案する。
論文 参考訳(メタデータ) (2024-01-12T16:42:10Z) - Affect Recognition in Conversations Using Large Language Models [9.689990547610664]
影響認識は人間のコミュニケーションにおいて重要な役割を担っている。
本研究では,会話における人間の影響を認識するための言語モデル(LLM)の能力について検討する。
論文 参考訳(メタデータ) (2023-09-22T14:11:23Z) - Building Emotional Support Chatbots in the Era of LLMs [64.06811786616471]
我々は,Large Language Models (LLMs) の計算能力で人間の洞察を合成する革新的な方法論を導入する。
また,ChatGPTの文脈内学習の可能性を利用して,ExTESと呼ばれる感情支援対話データセットを生成する。
次に、LLaMAモデルに高度なチューニング手法を展開し、多様なトレーニング戦略の影響を検証し、最終的に感情的支援の相互作用に細心の注意を払ってLLMを出力する。
論文 参考訳(メタデータ) (2023-08-17T10:49:18Z) - Facilitating Multi-turn Emotional Support Conversation with Positive
Emotion Elicitation: A Reinforcement Learning Approach [58.88422314998018]
感情支援会話(ESC)は、精神状態を改善するための感情支援(ES)を提供することを目的としている。
既存の作業は、ESへの影響を無視し、感情的なポジティブな移行を導くための明確な目標が欠如している、接地された応答と対応戦略に留まっている。
マルチターンESCを肯定的感情誘発のプロセスとして定式化する新しいパラダイムを導入する。
論文 参考訳(メタデータ) (2023-07-16T09:58:44Z) - Large Language Models Understand and Can be Enhanced by Emotional
Stimuli [53.53886609012119]
我々は、感情的な刺激を理解するために、大規模言語モデルの能力を探究する第一歩を踏み出す。
実験の結果,LLMは感情的知能を把握でき,その性能は感情的刺激によって改善できることがわかった。
EmotionPromptが生成タスクの性能を大幅に向上させることを示す。
論文 参考訳(メタデータ) (2023-07-14T00:57:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。