論文の概要: Zero-shot LLM-guided Counterfactual Generation for Text
- arxiv url: http://arxiv.org/abs/2405.04793v1
- Date: Wed, 8 May 2024 03:57:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-09 15:24:34.042398
- Title: Zero-shot LLM-guided Counterfactual Generation for Text
- Title(参考訳): ゼロショットLDM誘導によるテキスト生成
- Authors: Amrita Bhattacharjee, Raha Moraffah, Joshua Garland, Huan Liu,
- Abstract要約: 本稿では,大規模言語モデル (LLM) を汎用対実例生成器として利用する構造的手法を提案する。
ブラックボックスNLPモデルの評価と説明におけるゼロショット逆ファクトジェネレータとしてのLCMの有効性を実証する。
- 参考スコア(独自算出の注目度): 15.254775341371364
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Counterfactual examples are frequently used for model development and evaluation in many natural language processing (NLP) tasks. Although methods for automated counterfactual generation have been explored, such methods depend on models such as pre-trained language models that are then fine-tuned on auxiliary, often task-specific datasets. Collecting and annotating such datasets for counterfactual generation is labor intensive and therefore, infeasible in practice. Therefore, in this work, we focus on a novel problem setting: \textit{zero-shot counterfactual generation}. To this end, we propose a structured way to utilize large language models (LLMs) as general purpose counterfactual example generators. We hypothesize that the instruction-following and textual understanding capabilities of recent LLMs can be effectively leveraged for generating high quality counterfactuals in a zero-shot manner, without requiring any training or fine-tuning. Through comprehensive experiments on various downstream tasks in natural language processing (NLP), we demonstrate the efficacy of LLMs as zero-shot counterfactual generators in evaluating and explaining black-box NLP models.
- Abstract(参考訳): 逆実例は、多くの自然言語処理(NLP)タスクにおけるモデル開発と評価に頻繁に使用される。
自動対物生成の手法は研究されているが、そのような手法は事前訓練された言語モデルのようなモデルに依存し、補助的、しばしばタスク固有のデータセットに基づいて微調整される。
このようなデータセットの収集と注釈付けは、反ファクト生成に重きを置いているため、実際は不可能である。
そこで本研究では,新しい問題設定である「textit{zero-shot counterfactual generation}」に焦点を当てる。
そこで本研究では,大規模言語モデル(LLM)を汎用対実例生成器として利用するための構造化手法を提案する。
近年のLCMの命令追従とテキスト理解能力は、訓練や微調整を必要とせず、ゼロショットで高品質な偽物を生成するために有効に活用できると仮定する。
自然言語処理(NLP)における様々な下流タスクに関する総合的な実験を通じて、ブラックボックスNLPモデルの評価と説明において、ゼロショット逆ファクトジェネレータとしてのLLMの有効性を実証する。
関連論文リスト
- Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
大規模言語モデル(LLM)は、多種多様な高品質なタスク特化データのトレーニングの恩恵を受けている。
本稿では,効果的なトレーニングサンプルを自動生成する新しい手法であるReverseGenを提案する。
論文 参考訳(メタデータ) (2024-10-22T06:43:28Z) - Reference Trustable Decoding: A Training-Free Augmentation Paradigm for Large Language Models [79.41139393080736]
大規模言語モデル(LLM)は急速に進歩し、印象的な機能を示している。
In-Context Learning (ICL) など。
効率的なファインチューニング(PEFT)は、現在2つの主要な拡張方法である。
下流タスクへのLLM。
我々は、モデルが微調整なしで新しいタスクに迅速に適応できるパラダイムである参照信頼復号(RTD)を提案する。
論文 参考訳(メタデータ) (2024-09-30T10:48:20Z) - SIaM: Self-Improving Code-Assisted Mathematical Reasoning of Large Language Models [54.78329741186446]
本稿では,コードに基づく批判モデルを用いて,質問コードデータ構築,品質管理,補完的評価などのステップをガイドする新しいパラダイムを提案する。
英語と中国語におけるドメイン内ベンチマークとドメイン外ベンチマークの両方の実験は、提案したパラダイムの有効性を実証している。
論文 参考訳(メタデータ) (2024-08-28T06:33:03Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - Evolving Knowledge Distillation with Large Language Models and Active
Learning [46.85430680828938]
大規模言語モデル(LLM)は、様々なNLPタスクにまたがる顕著な機能を示している。
従来の研究は、注釈付きデータを生成してLPMの知識をより小さなモデルに抽出しようと試みてきた。
EvoKD: Evolving Knowledge Distillationを提案する。これは、アクティブラーニングの概念を利用して、大規模言語モデルを用いたデータ生成のプロセスをインタラクティブに強化する。
論文 参考訳(メタデータ) (2024-03-11T03:55:24Z) - AXOLOTL: Fairness through Assisted Self-Debiasing of Large Language
Model Outputs [20.772266479533776]
AXOLOTLはタスクやモデル間で不可知的に動作する新しい後処理フレームワークである。
バイアスを識別し、解像度を提案し、モデルにアウトプットを自己バイアスさせる。
このアプローチは計算コストを最小化し、モデル性能を保存する。
論文 参考訳(メタデータ) (2024-03-01T00:02:37Z) - Towards Modeling Learner Performance with Large Language Models [7.002923425715133]
本稿では,LLMのパターン認識とシーケンスモデリング機能が,知識追跡の領域にまで拡張できるかどうかを検討する。
ゼロショットプロンプト(ゼロショットプロンプト)とモデル微調整(モデル微調整)の2つの手法と,既存のLLM以外の知識追跡手法を比較した。
LLMベースのアプローチは最先端のパフォーマンスを達成しないが、微調整のLLMは素早いベースラインモデルの性能を上回り、標準的なベイズ的知識追跡手法と同等に機能する。
論文 参考訳(メタデータ) (2024-02-29T14:06:34Z) - LLM Augmented LLMs: Expanding Capabilities through Composition [56.40953749310957]
CALM -- 言語モデルの拡張のための構成 -- は、モデル間の相互アテンションを導入して、表現を構成し、新しい機能を有効にする。
低リソース言語で訓練されたより小さなモデルでPaLM2-Sを増強すると、英語への翻訳のようなタスクで最大13%の改善が達成される。
PaLM2-Sがコード固有モデルで拡張されると、コード生成や説明タスクのベースモデルよりも40%向上する。
論文 参考訳(メタデータ) (2024-01-04T18:53:01Z) - Language models are weak learners [71.33837923104808]
本研究では,プロンプトベースの大規模言語モデルは弱い学習者として効果的に動作可能であることを示す。
これらのモデルをブースティングアプローチに組み込むことで、モデル内の知識を活用して、従来のツリーベースのブースティングよりも優れています。
結果は、プロンプトベースのLLMが、少数の学習者だけでなく、より大きな機械学習パイプラインのコンポーネントとして機能する可能性を示している。
論文 参考訳(メタデータ) (2023-06-25T02:39:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。