論文の概要: Transformer Architecture for NetsDB
- arxiv url: http://arxiv.org/abs/2405.04807v1
- Date: Wed, 8 May 2024 04:38:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-09 15:24:34.027529
- Title: Transformer Architecture for NetsDB
- Title(参考訳): NetsDBのトランスフォーマーアーキテクチャ
- Authors: Subodh Kamble, Kunal Sunil Kasodekar,
- Abstract要約: 火星は、このデータ収集プロセスを妨げている地域や地域の塵嵐が頻発している。
これらの画像を手動で取り除くには、大量の人力が必要である。
私はこれらのほこりっぽいパッチを分類して保存するパイプラインを設計します。
また、AutoベースのデノイザとPix2 GANを使って、部分的に妨害された画像をデノイズします。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: HiRISE (High-Resolution Imaging Science Experiment) is a camera onboard the Mars Reconnaissance orbiter responsible for photographing vast areas of the Martian surface in unprecedented detail. It can capture millions of incredible closeup images in minutes. However, Mars suffers from frequent regional and local dust storms hampering this data-collection process, and pipeline, resulting in loss of effort and crucial flight time. Removing these images manually requires a large amount of manpower. I filter out these images obstructed by atmospheric dust automatically by using a Dust Image Classifier fine-tuned on Resnet-50 with an accuracy of 94.05%. To further facilitate the seamless filtering of Images I design a prediction pipeline that classifies and stores these dusty patches. I also denoise partially obstructed images using an Auto Encoder-based denoiser and Pix2Pix GAN with 0.75 and 0.99 SSIM Index respectively
- Abstract(参考訳): HiRISE (High-Resolution Imaging Science Experiment)は、火星探査機マーズ・リコネッサンスに搭載されたカメラで、火星表面の広大な領域を前例のない詳細で撮影する。
何百万ものクローズアップ画像を数分で撮影できます。
しかし、火星は、このデータ収集プロセスやパイプラインを妨害する頻繁に発生する地域や地域の塵嵐に悩まされ、努力の欠如と重要な飛行時間が失われる。
これらの画像を手動で取り除くには、大量の人力が必要である。
94.05%の精度でResnet-50で微調整されたダスト画像分類器を用いて、大気塵によって妨害されたこれらの画像を自動的にフィルタリングする。
Imagesのシームレスなフィルタリングを容易にするために、私はこれらのほこりっぽいパッチを分類して保存する予測パイプラインを設計しました。
また、Auto EncoderベースのデノイザとPix2Pix GANを使って、それぞれ0.75と0.99のSSIMインデックスで部分的に妨害された画像を復調する。
関連論文リスト
- A Collaborative Ensemble Framework for CTR Prediction [73.59868761656317]
我々は、複数の異なるモデルを活用するための新しいフレームワーク、CETNet(Collaborative Ensemble Training Network)を提案する。
ナイーブなモデルスケーリングとは違って,私たちのアプローチは,共同学習による多様性とコラボレーションを重視しています。
当社のフレームワークは,Metaの3つのパブリックデータセットと大規模産業データセットに基づいて検証する。
論文 参考訳(メタデータ) (2024-11-20T20:38:56Z) - EmbedLLM: Learning Compact Representations of Large Language Models [28.49433308281983]
大規模言語モデルのコンパクトなベクトル表現を学習するためのフレームワークである EmbedLLM を提案する。
このような埋め込みを学習するためのエンコーダ-デコーダアプローチと,その有効性を評価するための体系的なフレームワークを導入する。
EmbedLLMはモデルルーティングにおいて,精度とレイテンシの両方において,従来の手法よりも優れていた。
論文 参考訳(メタデータ) (2024-10-03T05:43:24Z) - ACE: All-round Creator and Editor Following Instructions via Diffusion Transformer [40.32254040909614]
視覚生成タスクのための全ラウンドクリエータとエディタであるACEを提案する。
まず、Long-Context Condition Unit (LCU)と呼ばれる統一条件形式を導入する。
次に,LCUを入力として使用するトランスフォーマーに基づく新しい拡散モデルを提案する。
論文 参考訳(メタデータ) (2024-09-30T17:56:27Z) - SortedNet: A Scalable and Generalized Framework for Training Modular Deep Neural Networks [30.069353400127046]
我々は、ディープニューラルネットワーク(DNN)の固有のモジュラリティを活用するためにSortedNetを提案する。
SortedNetは、メインモデルのトレーニングと同時にサブモデルのトレーニングを可能にする。
一度に160台のサブモデルを訓練でき、オリジナルのモデルの性能の少なくとも96%を達成できる。
論文 参考訳(メタデータ) (2023-09-01T05:12:25Z) - On Optimizing the Communication of Model Parallelism [74.15423270435949]
大規模モデル並列ディープラーニング(DL)における新しい重要なコミュニケーションパターンについて検討する。
クロスメッシュリシャーディングでは、シャードテンソルをソースデバイスメッシュから宛先デバイスメッシュに送信する必要がある。
本稿では、効率的な放送ベースの通信システムと「重複しやすい」パイプラインスケジュールという、クロスメシュ・リシャーディングに対処するための2つのコントリビューションを提案する。
論文 参考訳(メタデータ) (2022-11-10T03:56:48Z) - Slimmable Domain Adaptation [112.19652651687402]
重み付けモデルバンクを用いて、ドメイン間の一般化を改善するためのシンプルなフレームワーク、Slimmable Domain Adaptationを導入する。
私たちのフレームワークは、他の競合するアプローチを、複数のベンチマークにおいて非常に大きなマージンで上回ります。
論文 参考訳(メタデータ) (2022-06-14T06:28:04Z) - Retrieve-and-Fill for Scenario-based Task-Oriented Semantic Parsing [110.4684789199555]
シナリオベースのセマンティックパーシングを導入し、最初に発話の「scenario」を曖昧にする必要がある元のタスクの変種を紹介します。
この定式化により、タスクの粗くきめ細かな側面を分離することが可能となり、それぞれがオフザシェルフニューラルネットワークモジュールで解決される。
私たちのモデルはモジュール化され、差別化可能で、解釈可能で、シナリオから余分な監督を得られるようになります。
論文 参考訳(メタデータ) (2022-02-02T08:00:21Z) - OneFlow: Redesign the Distributed Deep Learning Framework from Scratch [17.798586916628174]
OneFlowは、SBP(スプリット、ブロードキャスト、部分値)の抽象化とアクターモデルに基づく、新しい分散トレーニングフレームワークである。
SBPは既存のフレームワークよりも、データ並列処理やモデル並列処理のプログラミングがずっと簡単になります。
OneFlowは、最先端のフレームワーク上に構築された多くの有名なカスタマイズライブラリよりも優れています。
論文 参考訳(メタデータ) (2021-10-28T11:32:14Z) - HRKD: Hierarchical Relational Knowledge Distillation for Cross-domain
Language Model Compression [53.90578309960526]
大規模事前学習言語モデル(PLM)は、従来のニューラルネットワーク手法と比較して圧倒的な性能を示している。
階層的および領域的関係情報の両方を抽出する階層的関係知識蒸留法(HRKD)を提案する。
論文 参考訳(メタデータ) (2021-10-16T11:23:02Z) - Model Fusion via Optimal Transport [64.13185244219353]
ニューラルネットワークのための階層モデル融合アルゴリズムを提案する。
これは、不均一な非i.d.データに基づいてトレーニングされたニューラルネットワーク間での"ワンショット"な知識伝達に成功していることを示す。
論文 参考訳(メタデータ) (2019-10-12T22:07:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。