論文の概要: Transformer Architecture for NetsDB
- arxiv url: http://arxiv.org/abs/2405.04807v2
- Date: Thu, 9 May 2024 12:02:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-10 12:23:27.578949
- Title: Transformer Architecture for NetsDB
- Title(参考訳): NetsDBのトランスフォーマーアーキテクチャ
- Authors: Subodh Kamble, Kunal Sunil Kasodekar,
- Abstract要約: 我々はNetsDBで機能するディープラーニングモデルのためのトランスフォーマーのエンドツーエンド実装を作成します。
分散処理、デプロイメント、効率的な推論のために、当社のモデルから重みをロードします。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Transformers models have become the backbone of the current state-of-the-art models in language, vision, and multimodal domains. These models, at their core, utilize multi-head self-attention to selectively aggregate context, generating dynamic contextual embeddings and modeling long-range dependencies for a clear contextual understanding. Lixi et al. \cite{zhou2022serving} proposed a method to use relational databases for deploying large-scale deep learning models and created an open-source implementation called NetsDB for the same. We build upon the previous work of these authors by creating an end-to-end implementation of the Encoder part of the transformer for model serving in NetsDB. Specifically, we construct a two-block encoder that includes Multi-Head Attention and its accompanying self-attention mechanism, Layer-Norm, Dropout, FeedForward Layers, and the necessary residual connections. We load out weights from our model for distributed processing, deployment, and efficient inferencing. To prove the efficacy of our implementation, we conduct a comprehensive performance analysis by comparing it with existing implementations in PyTorch, Tensorflow, Flax, and MxNet across key metrics such as inference time and model size.
- Abstract(参考訳): トランスフォーマーモデルは、言語、ビジョン、マルチモーダルドメインにおける現在の最先端モデルのバックボーンとなっている。
これらのモデルは、その中核にあるマルチヘッド自己関心を利用してコンテキストを選択的に集約し、動的コンテキスト埋め込みを生成し、コンテキスト理解を明確にするために長距離依存関係をモデル化する。
Lixi et al \cite{zhou2022serving} は,大規模ディープラーニングモデルのデプロイにリレーショナルデータベースを使用する方法を提案し,NetsDB というオープンソース実装を開発した。
我々は、NetsDBのモデルサービスのためのトランスフォーマーのエンコーダ部分のエンドツーエンド実装を作成することで、これらの著者の以前の作業の上に構築する。
具体的には、マルチヘッドアテンションとそれに伴う自己アテンション機構、Layer-Norm、Dropout、FeedForward Layers、および必要な残余接続を含む2ブロックエンコーダを構築する。
分散処理、デプロイメント、効率的な推論のために、当社のモデルから重みをロードします。
PyTorch, Tensorflow, Flax, MxNet の既存実装と, 推定時間やモデルサイズなどの重要な指標を比較し, 総合的な性能解析を行う。
関連論文リスト
- A Collaborative Ensemble Framework for CTR Prediction [73.59868761656317]
我々は、複数の異なるモデルを活用するための新しいフレームワーク、CETNet(Collaborative Ensemble Training Network)を提案する。
ナイーブなモデルスケーリングとは違って,私たちのアプローチは,共同学習による多様性とコラボレーションを重視しています。
当社のフレームワークは,Metaの3つのパブリックデータセットと大規模産業データセットに基づいて検証する。
論文 参考訳(メタデータ) (2024-11-20T20:38:56Z) - EmbedLLM: Learning Compact Representations of Large Language Models [28.49433308281983]
大規模言語モデルのコンパクトなベクトル表現を学習するためのフレームワークである EmbedLLM を提案する。
このような埋め込みを学習するためのエンコーダ-デコーダアプローチと,その有効性を評価するための体系的なフレームワークを導入する。
EmbedLLMはモデルルーティングにおいて,精度とレイテンシの両方において,従来の手法よりも優れていた。
論文 参考訳(メタデータ) (2024-10-03T05:43:24Z) - ACE: All-round Creator and Editor Following Instructions via Diffusion Transformer [40.32254040909614]
視覚生成タスクのための全ラウンドクリエータとエディタであるACEを提案する。
まず、Long-Context Condition Unit (LCU)と呼ばれる統一条件形式を導入する。
次に,LCUを入力として使用するトランスフォーマーに基づく新しい拡散モデルを提案する。
論文 参考訳(メタデータ) (2024-09-30T17:56:27Z) - SortedNet: A Scalable and Generalized Framework for Training Modular Deep Neural Networks [30.069353400127046]
我々は、ディープニューラルネットワーク(DNN)の固有のモジュラリティを活用するためにSortedNetを提案する。
SortedNetは、メインモデルのトレーニングと同時にサブモデルのトレーニングを可能にする。
一度に160台のサブモデルを訓練でき、オリジナルのモデルの性能の少なくとも96%を達成できる。
論文 参考訳(メタデータ) (2023-09-01T05:12:25Z) - On Optimizing the Communication of Model Parallelism [74.15423270435949]
大規模モデル並列ディープラーニング(DL)における新しい重要なコミュニケーションパターンについて検討する。
クロスメッシュリシャーディングでは、シャードテンソルをソースデバイスメッシュから宛先デバイスメッシュに送信する必要がある。
本稿では、効率的な放送ベースの通信システムと「重複しやすい」パイプラインスケジュールという、クロスメシュ・リシャーディングに対処するための2つのコントリビューションを提案する。
論文 参考訳(メタデータ) (2022-11-10T03:56:48Z) - Slimmable Domain Adaptation [112.19652651687402]
重み付けモデルバンクを用いて、ドメイン間の一般化を改善するためのシンプルなフレームワーク、Slimmable Domain Adaptationを導入する。
私たちのフレームワークは、他の競合するアプローチを、複数のベンチマークにおいて非常に大きなマージンで上回ります。
論文 参考訳(メタデータ) (2022-06-14T06:28:04Z) - Retrieve-and-Fill for Scenario-based Task-Oriented Semantic Parsing [110.4684789199555]
シナリオベースのセマンティックパーシングを導入し、最初に発話の「scenario」を曖昧にする必要がある元のタスクの変種を紹介します。
この定式化により、タスクの粗くきめ細かな側面を分離することが可能となり、それぞれがオフザシェルフニューラルネットワークモジュールで解決される。
私たちのモデルはモジュール化され、差別化可能で、解釈可能で、シナリオから余分な監督を得られるようになります。
論文 参考訳(メタデータ) (2022-02-02T08:00:21Z) - OneFlow: Redesign the Distributed Deep Learning Framework from Scratch [17.798586916628174]
OneFlowは、SBP(スプリット、ブロードキャスト、部分値)の抽象化とアクターモデルに基づく、新しい分散トレーニングフレームワークである。
SBPは既存のフレームワークよりも、データ並列処理やモデル並列処理のプログラミングがずっと簡単になります。
OneFlowは、最先端のフレームワーク上に構築された多くの有名なカスタマイズライブラリよりも優れています。
論文 参考訳(メタデータ) (2021-10-28T11:32:14Z) - HRKD: Hierarchical Relational Knowledge Distillation for Cross-domain
Language Model Compression [53.90578309960526]
大規模事前学習言語モデル(PLM)は、従来のニューラルネットワーク手法と比較して圧倒的な性能を示している。
階層的および領域的関係情報の両方を抽出する階層的関係知識蒸留法(HRKD)を提案する。
論文 参考訳(メタデータ) (2021-10-16T11:23:02Z) - Model Fusion via Optimal Transport [64.13185244219353]
ニューラルネットワークのための階層モデル融合アルゴリズムを提案する。
これは、不均一な非i.d.データに基づいてトレーニングされたニューラルネットワーク間での"ワンショット"な知識伝達に成功していることを示す。
論文 参考訳(メタデータ) (2019-10-12T22:07:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。