論文の概要: APrompt4EM: Augmented Prompt Tuning for Generalized Entity Matching
- arxiv url: http://arxiv.org/abs/2405.04820v1
- Date: Wed, 8 May 2024 05:38:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-09 15:14:42.536194
- Title: APrompt4EM: Augmented Prompt Tuning for Generalized Entity Matching
- Title(参考訳): APrompt4EM: 汎用エンティティマッチングのための拡張されたプロンプトチューニング
- Authors: Yikuan Xia, Jiazun Chen, Xinchi Li, Jun Gao,
- Abstract要約: Generalized Entity Matching (GEM)は、異なるフォーマットで表される2つのレコードが同じ現実世界のエンティティを指すかどうかを判定することを目的としている。
本稿では,2つの主な改善点からなる課題に対する拡張的プロンプトチューニングフレームワークを提案する。
- 参考スコア(独自算出の注目度): 5.92432068962337
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generalized Entity Matching (GEM), which aims at judging whether two records represented in different formats refer to the same real-world entity, is an essential task in data management. The prompt tuning paradigm for pre-trained language models (PLMs), including the recent PromptEM model, effectively addresses the challenges of low-resource GEM in practical applications, offering a robust solution when labeled data is scarce. However, existing prompt tuning models for GEM face the challenges of prompt design and information gap. This paper introduces an augmented prompt tuning framework for the challenges, which consists of two main improvements. The first is an augmented contextualized soft token-based prompt tuning method that extracts a guiding soft token benefit for the PLMs' prompt tuning, and the second is a cost-effective information augmentation strategy leveraging large language models (LLMs). Our approach performs well on the low-resource GEM challenges. Extensive experiments show promising advancements of our basic model without information augmentation over existing methods based on moderate-size PLMs (average 5.24%+), and our model with information augmentation achieves comparable performance compared with fine-tuned LLMs, using less than 14% of the API fee.
- Abstract(参考訳): 汎用エンティティマッチング(GEM)は、異なるフォーマットで表される2つのレコードが同じ現実世界のエンティティを指すかどうかを判断することを目的としており、データ管理において必須のタスクである。
最近のPromptEMモデルを含む事前学習言語モデル(PLM)の迅速なチューニングパラダイムは、実用的なアプリケーションにおける低リソースGEMの課題に効果的に対処し、ラベル付きデータが乏しい場合に堅牢なソリューションを提供する。
しかし、GEMの既存のプロンプトチューニングモデルは、迅速な設計と情報ギャップの課題に直面している。
本稿では,2つの主な改善点からなる課題に対する拡張的プロンプトチューニングフレームワークを提案する。
ひとつは、PLMのプロンプトチューニングのための導出ソフトトークンの利点を抽出する拡張文脈型ソフトトークンベースのプロンプトチューニング法であり、もうひとつは、大規模言語モデル(LLM)を活用したコスト効率の高い情報拡張戦略である。
当社のアプローチは、低リソースのGEM課題に対してうまく機能します。
広汎な実験により,中規模PLM(平均5.24%+)に基づく既存手法に対する情報拡張を伴わない基本モデルの有望な進歩が示された。
関連論文リスト
- Acoustic Model Optimization over Multiple Data Sources: Merging and Valuation [13.009945735929445]
本稿では,音声認識分野の課題を解くための新しいパラダイムを提案する。
最初の段階では、完全な音声データの異なるサブセットに基づいて複数の音響モデルを訓練する。
第2段階では、2つの新しいアルゴリズムを用いて高品質な音響モデルを生成する。
論文 参考訳(メタデータ) (2024-10-21T03:48:23Z) - Reference Trustable Decoding: A Training-Free Augmentation Paradigm for Large Language Models [79.41139393080736]
大規模言語モデル(LLM)は急速に進歩し、印象的な機能を示している。
In-Context Learning (ICL) など。
効率的なファインチューニング(PEFT)は、現在2つの主要な拡張方法である。
下流タスクへのLLM。
我々は、モデルが微調整なしで新しいタスクに迅速に適応できるパラダイムである参照信頼復号(RTD)を提案する。
論文 参考訳(メタデータ) (2024-09-30T10:48:20Z) - Improving Language Models via Plug-and-Play Retrieval Feedback [42.786225163763376]
大規模言語モデル(LLM)は、様々なNLPタスクで顕著なパフォーマンスを示す。
彼らはしばしば誤った情報や幻覚的な情報を生成し、現実のシナリオにおける現実的な適用を妨げます。
ReFeedは,プラグイン・アンド・プレイフレームワークにおける自動検索フィードバックを提供することにより,LLMの強化を目的とした新しいパイプラインである。
論文 参考訳(メタデータ) (2023-05-23T12:29:44Z) - Gradient-Regulated Meta-Prompt Learning for Generalizable
Vision-Language Models [137.74524357614285]
グラディエント・レグルアテッドメタプロンプト学習フレームワークについて紹介する。
パラメーターとデータ -- 効率的な方法で下流タスクにモデルを適応させるのに役立つ。
GRAMはモデルに依存しない方法で様々なプロンプトチューニング手法に容易に組み込むことができる。
論文 参考訳(メタデータ) (2023-03-12T05:03:37Z) - Guiding Large Language Models via Directional Stimulus Prompting [114.84930073977672]
我々は,特定の所望の出力に対して,ブラックボックス大言語モデル(LLM)を導くための新しいフレームワークであるDirectional Stimulus Promptingを紹介する。
LLMを直接調整するのではなく、小さな調整可能なポリシーモデルを用いて各入力インスタンスに対して補助的な指向性刺激プロンプトを生成する。
論文 参考訳(メタデータ) (2023-02-22T17:44:15Z) - Model ensemble instead of prompt fusion: a sample-specific knowledge
transfer method for few-shot prompt tuning [85.55727213502402]
我々は、ソースタスクのソフトプロンプトから知識を伝達することで、プロンプトチューニングにおける数ショットのパフォーマンスを改善することに集中する。
我々はソースモデル(SESoM)のサンプル固有アンサンブルを提案する。
SESoMは、ソースモデルが出力されるときに、ターゲットの各サンプルに対するソースモデルのコントリビューションを個別に調整することを学ぶ。
論文 参考訳(メタデータ) (2022-10-23T01:33:16Z) - Unified Vision and Language Prompt Learning [86.1530128487077]
本稿では,テキストプロンプトチューニングと視覚的プロンプトチューニングという,2つの代表的プロンプトチューニング手法に関する体系的研究を行う。
主要な発見は、テキストプロンプトチューニングは、高いクラス内の視覚的ばらつきを持つデータでは失敗する一方で、視覚的プロンプトチューニングはクラス間のばらつきを低く扱えないことである。
両世界から最高のものを組み合わせるために、我々はUnified Prompt Tuning (UPT)と呼ばれる単純なアプローチを提案する。
論文 参考訳(メタデータ) (2022-10-13T17:50:24Z) - Instance-wise Prompt Tuning for Pretrained Language Models [72.74916121511662]
インスタンスワイドのPrompt Tuning(IPT)は、入力データインスタンスからプロンプトに知識を注入する最初のプロンプト学習パラダイムである。
IPTはタスクベースのプロンプト学習法を著しく上回り、調律パラメータのわずか0.5%から1.5%で従来の微調整に匹敵する性能を達成している。
論文 参考訳(メタデータ) (2022-06-04T10:08:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。